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Preface

Graphs are among the simplest and most universal models for a variety of sys-
tems, not just in computer science, but throughout engineering and the life
sciences. When systems evolve we are interested in the way they change, to pre-
dict, support, or react to their evolution. Graph transformation combines the
idea of graphs as a universal modelling paradigm with a rule-based approach
to specify their evolution. The area is concerned with both the theory of graph
transformation and their application to a variety of domains.

The International Conferences on Graph Transformation aim at bringing to-
gether researchers and practitioners interested in the foundations and applications
of graph transformation. The 4th International Conference on Graph Transfor-
mation (ICGT 2008) was held in Leicester (UK) in the second week of September
2008, along with several satellite events. It continued the line of conferences pre-
viously held in Barcelona (Spain) in 2002, Rome (Italy) 2004, and Natal (Brazil)
in 2006 as well as a series of six International Workshops on Graph Transforma-
tion with Applications in Computer Science between 1978 to 1998. Also, ICGT
alternates with the workshop series on Application of Graph Transformation with
Industrial Relevance (AGTIVE). The conference was held under the auspices of
EATCS, EASST, and IFIP WG 1.3.

Responding to the call for papers, 57 papers were submitted. The papers were
reviewed thoroughly by program committee members and their co-reviewers. The
committee selected 27 papers for presentation at the conference and publication
in the proceedings. These papers mirror well the wide-ranged ongoing research
activities in the theory and application of graph transformation. They are con-
cerned with different kinds of graph transformation approaches, compositional
systems, validation and verification as well as various applications, mainly to
model transformation and distributed systems. Paper submission and reviewing
were supported by the free conference management system EasyChair.

In addition to the presentation of technical papers the conference featured
three invited speakers, a doctoral symposium, a tutorial, and four workshops.

Invited Speakers. The invited talk by Perdita Stevens introduced an algebraic
approach of bidirectional transformations exploring the group theory of the lens
framework for bidirectional transformations. In his invited talk, Wil van der
Aalst presented the Petri net formalism as a natural candidate for modeling and
analysis of workflow processes. The third invited speaker was Heiko Dorr, who
presented an approach for model-based engineering in automotive systems and
discussed the role of rule-based transformations in that context.

Satellite Fvents. For the first time at ICGT, a Doctoral Symposium took place — it
was organized by Andrea Corradini and Emilio Tuosto. 16 young researchers had
the opportunity to present their work and interact with established researchers of
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the graph transformation community. A tutorial by Reiko Heckel gave newcomers
to the field an opportunity to get a general introduction to graph transformation.
In addition four workshops were organized where participants of the ICGT could
exchange ideas and views on some subareas of graph transformation:

Workshop on Graph Computation Models by Mohamed Mosbah and An-
negret Habel,

4th Workshop on Graph-Based Tools by Arend Rensink and Pieter Van Gorp,
3rd Workshop on Petri Nets and Graph Transformations by Paolo Baldan
and Barbara Konig, and

Workshop on Natural Computing and Graph Transformations by Ion Petre
and Grzegorz Rozenberg.

We would like to thank Dénes Bisztray, Karsten Ehrig, Stefan Jurack, Paolo Tor-
rini, and Gerd Wierse who provided their valuable help throughout the prepara-
tion and organization of the conference and the proceedings. Last but not least,
we are grateful to Springer for their helpful collaboration and quick publication.

July 2008 Hartmut Ehrig
Reiko Heckel

Grzegorz Rozenberg

Gabriele Taentzer
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Towards an Algebraic Theory of Bidirectional
Transformations

Perdita Stevens

Laboratory for Foundations of Computer Science
School of Informatics
University of Edinburgh

Abstract. Bidirectional transformations are important for model-driven
development, and are also of wide interest in computer science. In this
paper we present early work on an algebraic presentation of bidirectional
transformations. In general, a bidirectional transformation must maintain
consistency between two models, either of which may be edited, and each of
which may incorporate information not represented in the other. Our main
focus here is on lenses [2[TI3] which provide a particularly well-understood
special case, in which one model is an abstraction of the other, and either
the abstraction or the full model may be edited. We show that there is a
correspondence between lenses and short exact sequences of monoids of ed-
its. We go on to show that if we restrict attention to invertible edits, very
well-behaved lenses correspond to split short exact sequences of groups;
this helps to elucidate the structure of the edit groups.

1 Introduction

Fundamental to the idea of graph transformations is the idea that a change in
one structure can correspond to a change in another in a precise sense. This fun-
damental idea appears in different guises in many areas of informatics; the guise
most familiar to the present author is that of bidirectional model transformations,
as they appear in the OMG’s Model-Driven Architecture (or, as it is now usually
more suggestively called, Model-Driven Development) initiative. A bidirectional
transformation R between two classes of models, say M and N, incorporates a
precise notion of what it is for m € M to be consistent with n € N:

RCMxN

It also specifies how, if one model is changed, the other can be changed so as to
restore consistency. The forward transformation

N
R:MxN-—N

takes a pair of models (m,n) which are not (necessarily) consistent. Leaving m
alone, it calculates how to modify n so as to restore consistency. It returns this
calculated n’ such that R(m,n’). Symmetrically,

-
R:MxN—M

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 1 2008.
© Springer-Verlag Berlin Heidelberg 2008



2 P. Stevens

explains how to roll changes made to a model from N back to a change to make
to a model from M.

For practical reasons, it is preferable that all three elements of the transfor-
mation — R, 1_%) and ﬁ — be expressed in one text; but this will not be essential
to our semantic treatment here.

This basic framework is flexible enough to explain a wide range of languages
for bidirectional transformations, including for example the OMG’s QVT-R
(Queries Views and Transformations — Relations) language. That language is
discussed in [5], as are the postulates that a bidirectional transformation may
be expected to satisfy. The reader is referred to that paper for details. In brief,
the two main postulates are correctness and hippocraticness. Correctness has
already been mentioned: it states that the forwards and backwards transforma-
tions really do restore consistency, e.g. that the returned n’ above really does
satisfy R(m,n’). Hippocraticness (“first do no harm”) states that the transfor-
mation must not modify a pair of models which is already consistent (not even
by returning a different consistent model). Correctness and hippocraticness go a
long way to ruling out “silly” transformations, but something else still seems to
be required. In [5] a third postulate, undoability is proposed, but this is arguably
too strong.

The crucial point to notice is that there may be a genuine choice about how con-
sistency is restored. In the absence of defensible way to define which is the “best”
option, we want that choice to be in the hands of the person who designs the trans-
formation. Given m € M, there may be many n’ € N such that R(m,n’). Given

a model n such that R(m,n) does not hold, the designer of the transformation
<

R should be able to choose which of the possible n” will be returned. Although it
may be that our transformation language imposes some limitations, for it to be
practically useful it will have to permit considerable choice.

Thus far, our framework, like those typically used in graph transformations,
is completely symmetric in M, N. Neither model is necessarily an abstraction
of the other: each may contain information which is not contained in the other.
We will begin with this general situation, but later we shall specialise to the
particular case where N is an abstraction of M. This is the situation studied
by the Harmony group and reported on in a series of papers including [2I[].
Much of the present paper can reasonably be seen as “just” a translation into
algebraic language of that work, sometimes with generalisation, sometimes with
restriction. At the end of the paper we will discuss why this may be a useful
undertaking; at the very least, it is hoped that it may amuse the algebraically-
inclined reader.

The rest of this paper is structured as follows. In Section 2] we introduce some
important equivalence relations that a bidirectional transformation imposes on
the sets of models it relates. In Section [§] we discuss edits and introduce some
basic algebraic ideas. Section ] shows how to construct a short exact sequence
of monoids (or groups) from appropriate lenses, while Section [B] shows how to
go the other way, from a suitable sequence to a lens. Finally Section [@ concludes
and briefly mentions future work.
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A recent survey of bidirectional transformation approaches is found in [6];
these are many, so this paper will not attempt to summarise again, but will stick
to the technical focus.

2 Transformations and Equivalences

Let R (comprising, by abuse of notation, a consistency relation R, a forward

transformation R and a backward transformation ﬁ) be a transformation which
is correct and hippocratic.

We will always assume that there is a trivial or content-free element of each
set of models; for example, we will write the trivial element of M as §2);. If M
is a set of models defined by a metamodel, this might be the model containing
no model elements, if that is a member of M, i.e. permitted according to the
metamodel. However, it might not be literally empty; if for example all models
in M are required to contain some basic model elements, then §2); will contain
these and nothing else. We will assume that R(£2x7, £2v).

— — — —
Definition 1. The equivalence relations B and B on M, and F and F' on N,
are defined as follows:

- mn~_m'&Vne N.I_%)(m,n) = I_%)(m’,n)
(Intustively, this says “m and m' do not differ in any way that is visible on the
N side”. The reader familiar with lenses will recognise that this generalises
~g-)

— —

- m~-m'&VneN.R(m,n)= R(m',n)
(Intustively, “the only differences between m and m' are those visible on
the N side, so that they become indisinguishable after any synchronisation
with an element of N”. The reader familiar with [1] will recognise that this
generalises ~may, the coarsest equivalence with respect to which a lens is
quasi-oblivious. )

and dually,

— —
—n~=n"&V¥meMR(mn)= R(m,n')
—n~on' & Vme M.E(m, n) = <E(m,n’)

We can also, in the obvious way give versions of these definitions which are
parameterised on subsets of M, N, respectively, the above then being given
by plugging in the largest available set, getting the finest available equivalence
relations. We do not need any of the coarser equivalences in this paper, however.

Thus, the transformation defines two different equivalences on M (and dually
on N). Of course, any element m € M can then be viewed as a representative of
its equivalence class [m]. s.orasa representative of its other equivalence class

[m]~_. These are the co-ordinates of m in the sense that m is uniquely defined

B
by its two classes; this was already remarked in the case of lenses in [I]:
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Lemma 1. ElLetml,mg € M. If both my ~— Mg and my ~o Mg thenmi = mao.

A useful picture to bear in mind — although, of course, since M need not be
finite or even countable, it is only an informal idea — is of the elements of M laid
out on a grid whose columns represent NE—equivalence classes and whose rows
represent NE—equivalence classes. We have just shown that no square on the grid
can contain more than one element of M. In general, not every square need be
occupied; indeed, the equivalence classes might have different cardinalities.

The closure of M with respect to transformation R, denoted by M, is the
cartesian product of the two sets of equivalence classes, which “contains” M:
informally, the set of all squares in the grid. We will have M = M in the special
case that R is an undoable transformation (again, this corresponds to a remark
in [1] for lenses).

Since we are, so far, in the completely symmetric case of general bidirectional
transformations, the same remarks and result apply to N. In the special case of
lenses, which we shall come to, the grid for IV, which in that setting is a strict
abstraction of M, is degenerate, since then ~— is universal and ~ is trivial.
In the even more special case of a bijective transformation (or oblivious lens, in
the terminology of [2]), the grid for M is also degenerate.

3 Edits and Algebraic Basics

We will assume that the reader is familiar with the standard notions of group,
monoid, mono-, epi- and isomorphisms of groups and monoids, subgroup, sub-
monoid, and normal subgroup. Other definitions from algebra will be reproduced,
marked (Standard).

In order to discuss how transformations behave it is useful to have a notion
of an edit: a way in which a model is changed by its user. When an edit has
been done on a model, restoring consistency between it and another model is a
matter of performing the “corresponding” edit on the other model. The task of
a transformation is then to specify what it means for an edit on one structure
to correspond to an edit on the other structure.

The notion of an edit, though, is a little trickier than at first appears. What is
an “edit” on a model? Intuitively, it is a thing you can do to an model, changing
it into another model. Doing nothing is certainly an edit; edits can be undone;
two edits can be done in sucession. Can the same edit be done on any model
from a given model set; in other words, if we model an edit as an endofunction

g:M— M

should it be total? It is easy to come up with reasonable examples we might
want to model that are (“add a class with a new name in the top level package”)
but also easy to come up with examples that at first sight are not (“delete the
class called Customer”). We can get around the problem of edits which are not

L All proofs — generally easy — are omitted. A version of the paper which does contain
proofs is available from the author’s web page.
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obviously total by decreeing that if an edit is not naturalistically applicable to a
given model, then it should leave the model unchanged (“delete the class called
Customer if there is one, otherwise do nothing”). In this way, we can model only
total edits without imposing any real restriction.

To say that doing nothing is an edit is simply to say that the identity function
is an edit. Then to say that edits can be composed is to say that the set of edits
is a monoid. We will give the definition in order to set up some notation.

Definition 2. (Standard) A set G provided with an operation
x:GxG—G
(written infiz, e.g. g1 * g2, and in practice normally omitted: g1 g2) is a monoid if

1. G contains an identity element, written 1, such that for any g € G
lexg=gxla=g
2. x is associative: that is, for any g1, g2, g3 € G, we have

(g1 % g2) * g3 = g1 * (g2 * g3)

Given a set S, we will often be interested in the monoid of all endofunctions
S — S, in which the operation is function composition and the identity is the
identity, “do nothing” function. We will write this M ().

What about the fact that edits can be undone? It is tempting to say that this
means we have a group of edits, but this is premature. To say that an edit can
be undone in the sense that a modelling tool will allow simply means that the
tool will retain enough information to reverse any change that the user makes.
It does not mean that there will necessarily be an edit ¢! which always undoes
the effect of edit g, regardless of which model it was applied to. For example, in
the case of our edit “delete the class called Customer if there is one, otherwise
do nothing”, there is no inverse, because the edit is not injective.

Definition 3. (Standard) Let G be a monoid. If in addition G has inverses;
that is, for any g € G there is an element g~ € G such that

g xg=gxg ' =1¢

then G is a group. In that case, inverses are necessarily unique.

Let us pause to observe that an edit can be total without being invertible, and
vice versa. For example,

— “delete everything” is total, but not invertible

— “delete package P and everything in it” is neither total nor invertible

— “add 1 to constant MAX” is not total, but it is invertible where defined

— “swap true and false wherever they occur” is both total and invertible (as
it happens, it is self-inverse).
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Given any monoid M of endofunctions on a set S, we will sometimes be
interested in the set of all invertible — that is, bijective — elements of M, which
of course forms a group. We will write this G(M). Then in particular G(M (S))
is the full permutation group on S.

Let us also note that if our transformation engine only sees models, before
and after edits, it does not have access to information about what edit the user
was doing, in the sense that we do not find out what s/he would have done on
a different model; we only see what was done in one instance. Since the user
may be thinking of a permutation, the transformation certainly has to behave
sensibly in that case. Thus let us proceed, for now not committing ourselves to
whether we have a group or only a monoid of edits.

Definition 4. (Standard) Let G be a group or a monoid. The action of G on a
set M is a function
G M—M

such that for any g, h, m

1. 1 -m=m
2. (gh) -m=g(h-m)

We normally omit the dot and just write gm.

If G is a group, i.e. has inverses, it is easy to see that g~ 'n = m iff gm = n. This

is why any group action on a set is a permutation action.

3.1 Lenses

We now switch to the restricted setting of lenses, in which one of the models is
a strict abstraction of the other. We will use the notation of [I].

The basic premise is that we have two (maybe structured) sets, C' and A,
connected by an abstraction function get : C — A. We consider ¢ and a to be
consistent iff get ¢ = a.

The get function, as well as specifying consistency, also provides the forwards
transformation. Because of the restricted framework there is no choice, in the
sense that the forward transformation is completely determined by the consis-
tency relation: given ¢, there is a unique consistent a. Thus a lens [ corresponds
to a special bidirectional transformation R in which R(c,a) holds iff a = get ¢,
and 17_%)(07 a) = get ¢ (note that in this special case R ignores a).

We will also need the two equivalence relations on C' denoted ~o and ~e
above, which as remarked are called ~4 and ~max in [1. In the special case of
lenses, we will refer to these equivalences as ~4 and ~, respectively, for reasons
which will become apparent. Thus ¢; ~4 co iff get ¢; = get co, while ¢; ~p, co
iff for every a € A we have put a ¢; = put a co.

Where the lens designer has a genuine choice is in the put function, which
corresponds to the backward transformation. A lens also provides

put :A—C—C
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Note that in [2] lenses are for technical reasons not required to be total on
their domains, in order that a language of lenses can be defined using recursion;
the lenses eventually written by a lens programmer will be total. In this paper,
where we consider only semantic issues and do not concern ourselves with the
language in which lenses are defined, we are only considering total lenses.

We will, as remarked in the symmetric setting, always assume that there is a
trivial or content-free element of C, written {2¢, and similarly for A. We require
get 2c = 24 (thus ensuring that ¢ and (24 are consistent, as required) and
we derive a function

create : A — C

a+— put a 2¢

To complete the definition, lenses are (in this paper) required to satisfy two
basic lens laws, as follows.

Definition 5. (adapted from [2]) Let C and A be sets, containing trivial ele-
ments ¢ and 24 respectively. A lens from C to A consists of a pair of functions,
get: C — A and put: A — C — C, such that the following conditions hold:

get -QC =24
put (get ¢) c=c GETPUT
get (putac)=a PuTrGET

Note that the lens law CREATEGET from [I], viz that for any a € A we have
get (create a) = a, follows from the definition and PUTGET.

In general create (get ¢) need not of course be ¢ (it could be something else
in the same ~ 4 equivalence class), but we do have (and will later use):

Lemma 2. Create 24 = (2¢c

This framework is equivalent to a restricted version of the model transformation
framework in which the right hand model is required to be an abstraction of the
left hand model, and transformations are required to be correct and hippocratic
but not undoable. The curious thing is how little those two conditions alone
actually restrict the transformation writer: there is an enormous amount of choice
about what the put function should do, and many such choices will be in no way
defensible as “sensible” behaviour. Formally:

Lemma 3. Let get : C' — A be a surjective function, and let f. : A — C
be a family of injective functions, one for each ¢ € C. Then provided only that
fe(get ¢) = ¢ for each ¢ € C, get together with the function put defined by
put a ¢ =g fela) is a lens.

Basically, the lens laws force put to behave correctly if putting back an abstract
element against the concrete element of which it is an abstraction — it is not
allowed to break things if nothing has changed — but once any modification has
been made in the abstract view, all bets are off. The corresponding issue in the
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model transformation framework is that hippocraticness requires a transforma-
tion not to fix something that isn’t broken, but as soon as it is broken in even
a trivial detail, the transformation is allowed to do whatever it wants. This is
intuitively all wrong: we generally want a tiny change to one model to cause a
tiny change to another, or at the very least, only certain enormous changes will
seem reasonable! The question of how this should best be captured in a lan-
guage framework is still open. As discussed in [5], we currently have no entirely
satisfactory candidate condition. See also the discussion in [2]. Most convincing,
although for some applications too strong, is the law called PUTPUT in [2]: it
states (modulo totality) that for any a,a’ € A and ¢ € C,

put a’ (put a ¢) = put a’ ¢ PuTPuT
Definition 6. (from [2]) A lensis called very well-behaved if it satisfies PUTPUT.

4 Building Sequences from Lenses

Suppose we are given a lens: that is, sets C' and A, each with their trivial element,
with functions get and put satisfying the lens laws (and derived function create).
In this section we will show how to represent this lens algebraically.

Now, fundamentally what we want to do is to say what edit on one model
corresponds to an edit on the other, and we want to do this in such a way that
composition of edits is respected and obviously so that doing nothing on one
model corresponds to doing nothing on the other.

Lenses, however, do not come equipped with a notion of edit: we have to add
that. What should the edits on C' be? Our first thought might be to use the whole
monoid of functions from C' to itself: but in fact, we will need a compatibility
condition in order for get, which is supposed to be an abstraction function, to
work as one. The condition is that for any ¢g in our monoid of edits, and for any
c,c e C:

get ¢ = get ¢ = get gc = get gc’ COMPAT

— in other words, an edit should act on C/~y4. Let IIc € M(C) be the set
of all functions from C to itself that satisfy this compatibility condition. It is
easy to see that Il¢ is itself a monoid, and that it acts transitively on C', which
reassures us that it is expressive enough to model anything the user does to an
actual model. In fact, an element g of Il is defined by:

1. a function g : C'/~ 44— C/~ 4, together with
2. for each [c] € C'/~4, a function g : [c] — [gc].

Essentially the compatibility condition says that the abstraction embodied in
get respects the edits which are allowed, in the sense that if two concrete states
look the same in the abstract view before a concrete edit, they will also look the
same in the abstract view after the edit. Although this may repay further study,
it seems a plausible requirement, in order for there to be a notion of edit on
the abstract domain which is compatible with the notion of edit on the concrete
domain.
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Lemma 4. Any lens induces a monoid homomorphism
w:Ile — M(A)
defined as
(ng)(a) = get (g(create a))

Let us write K and H for the kernel and image of u, respectively.
Lemma 5. If g1 2c = g22¢ then pugr 24 = ug2024

Next, consider the function (in the absence of PUTPUT it is not necessarily a
homomorphism, as we shall discuss):

AN H — Ils

given by
(M) (c) = put h(get ¢) ¢

This is the function that captures how to “put back” information introduced by
a user editing an abstract model, to give a corresponding edit on the concrete
model.

Lemma 6. \ is well-defined.
Lemma 7. p is the identity on H.

Thus, the function A is a right inverse for the epimorphism .
Although in general A may not be a monoid homomorphism, it does behave
as such on the identity:

Lemma 8. (\ly) =17,
Later, we shall want:

Lemma 9. For all g € Il and for all h € H, we have
h(pg)Ra = (1g) 24 = (M\)gQc = gfc
To sum up what we have done so far, we need two more standard definitions:

Definition 7. (Standard) A sequence of groups or monoids

i Aif1
R G,;l = GZ' — Gi+1 — ...

1s exact if for each i,
mmg A\, = ker A1

— that s, the elements of G; which are the images under \; of elements of G;_1
are exactly those elements of G; which are mapped by A\;y1 to the identity element

of Git1.
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Definition 8. (Standard) A short exact sequence is an exact sequence of length
5, whose ends are trivial:

1-K—-G—H—1

Therefore we may rephrase what we have shown so far as

Proposition 1. Let [ be a lens from C to A, consisting of functions put and
get. Let Il be the monoid of endofunctions on C which satisfy COMPAT. Then

1—>K—>Hcﬁ>H—>1

1s a short exact sequence of monoids, where the monoid homomorphism u is
defined by

(1g)(a) = get (g(create a))

Moreover, the function X\ : H — I defined by (Ah)(c) = put h(get ¢) ¢ is
a right inverse for .

However, the usual reason in algebra for considering short exact sequences is that
they often encode useful information about the structures in them; unfortunately,
in the case of general monoids, they are not so informative. The rephrasing above
is suggestive, but not yet very useful. In order to go further, we have to restrict
the setting. There are two obvious ways to do this: we can consider only very well-
behaved lenses (those which satisfy PUTPUT), and/or we can restrict attention
to invertible edits. Let us consider the first of these restrictions first.

4.1 Very Well-Behaved Lenses

It turns out that insisting that the lens be very well-behaved corresponds exactly
to insisting that A be a monoid homomorphism.

Lemma 10. If PUuTPUT holds then A is a monoid homomorphism.
Lemma 11. If X is a homomorphism then PUTPUT holds.

This is a very interesting correspondence, particularly in view of the difficulty,
mentioned earlier, in choosing an appropriate condition to complement the basic
lens laws and ensure “sensible” behaviour. The fact that PUTPUT corresponds
to so basic an algebraic phenomenon as homomorphism is encouraging. Let us
now consider the restriction to invertible edits.

4.2 Invertible Edits

Recall that for any monoid M, G(M) is the collection of invertible elements of
M, which forms a group. Using exactly the same definition as above, we can
define p: G(II¢) — G(M(A)).

However, it turns out that the development we did for monoids will fail in
two ways if we try to use an arbitrary lens in conjunction with considering only
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invertible edits. Firstly, the action of G(II¢) will not necessarily be transitive on
C, because if ¢; and ¢y are in ~4 equivalence classes of different cardinalities,
then no invertible element of IT- can map ¢ to ca. A consequence of this is that,
if we restrict to invertible edits but still consider an arbitrary lens, there might
be cases were we could not handle the situation in which a user modified a model
c1, turning it into ¢y, and the changes were rolled through to a corresponding
model. Since the original lens, which is independent of any notion of edit, can
roll through any change a user might make, our algebraic framework would then
be failing to describe the full behaviour of the lens. Secondly, our function A
might not be well-defined, since if it is not a monoid homomorphism, it might
map an invertible edit to one which is not invertible.

Both of these problems are solved if we assume, for the remainder of the
section, that [ is a very well-behaved lens, so that PUTPUT holds. (This may not
be the only way to proceed, however.) The development done for monoids now
goes through smoothly, using

Lemma 12. (from [1]) If | is a very well-behaved lens, then there is a bijection
between C' and the cartesian product C/~y xC /[~ 4.

In particular, all the equivalence classes in C'/~4 have the same cardinality:
according to the informal grid picture we suggested before, there is exactly one
element of C' occupying every square of the rectangular grid whose columns are
labelled by elements of C'/~4 and whose columns are labelled by elements of
C/~r.

Thus an element g of G(II) is defined by:

1. a permutation g : C'/~4— C/~4, together with
2. for each [] € C/~4, a bijection g : [c] — [gc].

First, we need to check that for any g € G(Il), the endofunction g is indeed
invertible. This is immediate from the fact that g is a monoid homomorphism.
Recall that any monoid homomorphism between groups is a group homomor-
phism. Finally we have to check that A remains well-defined when restricted.
Since A is a monoid homomorphism, the image of any invertible element is in-
vertible, so it is a group homomorphism.

We will now write G instead of G(I1¢).

Now that we are considering groups rather than just monoids, let us return
to our short exact sequence. The crucial standard result is

Lemma 13. (Standard) Let
1-K—-G—H—1

be a short exact sequence of groups. Then K IG and G/K ~ H; we say that G
is an extension of H by K.

That is, the short exact sequence tells you how G is in a certain sense built from
its substructure K together with the extending structure H. Notice, though,
that H need not embed in G, i.e., there need not be any group monomorphism
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from H to G; if these are edit structures, there need not be a systematic way
to regard an edit done on an abstract model as an edit done on the concrete
model. That is, we cannot necessarily express the edits that can be done on the
concrete domain, in terms of edits done on the abstract domain together with
other information. Algebraically, this is because — in general — a short exact
sequence does not necessarily split.

Definition 9. (Standard) A short exact sequence of groups
1-K—-G23H-—1

1s said to split if there exists a group monomorphism \ : H — G which composes
with o to the identity on H:

Vh € Ho(Ah) =h
In that case, X is said to split the sequence, and G ~ K x H.

Definition 10. (Standard) Let G be a group, with subgroups K <G and H < G.
G is the (internal) semi-direct product K x H if:

- KH=G
- KNH=1¢g

In this case, we observe that

— every element g of G can be written uniquely as the product g = kh of
elements k € K and h € H;

— (kh)=' = (h"'k'h)h~1 (note that h='k~'h € K by normality of K );

— (k1h1)(kahg) = (kihikahy ') (hihe) (noting again that this is the product of
an element of K and one of H, by normality).

The product is direct if in addition H and K commute.

Our restriction to very well-behaved lenses gives us that A is a monoid and hence
a group homomorphism, which is exactly what is needed to ensure that the short
exact sequence splits. That is, we have (summarising)

Theorem 1. Let [ be a very well-behaved lens from C' to A, consisting of func-
tions put and get. Let G be the group of invertible endofunctions on C which
satisfy COMPAT. Then

1-K—-GA% H—-1

is a short exact sequence of groups, where the group homomorphism p is defined
by
(ng)(a) = get (g(create a))
Moreover, the function A : H — G defined by (Ah)(c) = put h(get ¢) ¢ is a
right inverse for u, and a group homomorphism. Therefore it splits the sequence

and we have an isomorphism
KxH~G
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We can now discuss the action of G on C in terms of what K, H do to C/~p
and C/NA

Lemma 14. The subgroup NH of G acts, trivially, on C/~y: that is, for any
ceC and h € H, (Ah)c ~ c.

To put it another way, A(H) stabilises the ~-equivalence classes.

In particular, A\(H) < G acts on create A C C just as H acts on A.

Let us identify A with the set create A and take this as the transversal of ~ 4;
and let L be the set put 24 C, and take these elements as the transversal of ~,.
Observe that (in this restricted setting) create a ~j, create b for any a,b € A,
and also get (put 24 ¢) = get (put 24 d)(= 24) for any ¢,d € C, so we can
picture the elements of create A laid out as the bottom row and the elements
of L in the left-hand column of our grid, respectively. We can identify C with
L x A via the bijection ¢ — (put {24 ¢, create (get c)).

Let us from now on elide A and regard H as a subgroup of G via A\

In terms of our informal grid, elements of H stabilise the rows, permuting the
elements of each row. Each row is permuted identically. Formally:

Lemma 15. For any h € H and (I,a) € L x A we have h(l,a) = (I, ha).

Next we consider the role of K.

Lemma 16. The normal subgroup K of G acts, trivially, on C/~ 4: that is, for
any c € C and k € K, kc~4 c.

To put it another way, K stabilises the ~ 4-equivalence classes. In particular, K
acts on L. In terms of our informal grid, elements of K stabilise the columns,
possibly permuting the elements of each column individually. Unlike H acting on
rows, however, K does not necessarily do the same permutation on each column.
Suppose for a moment that we are not given G with its action on L x A = C,
but instead are given just H and K, together with K’s action on L (that is, on
the left-hand column of the informal grid only) and H's action on A (that is, on
the bottom row of the grid). We may ask, does this information determine the
full action of G on L x A? If not, to what extent does it constrain it? Since we
know that H acts in the same way on every row, so its action on C'is determined
by its action on A, the interesting part is how K can act on a general element.

Lemma 17. Let k € K and (l,a) € L x A. Then k(l,a) can be written as
((hkh=1)l,a) where h € H satisfies ha = (24.

Putting these calculations together, we see that the action of G on C can be
composed from the actions of H on A and of K on L, thus:

(kh)(l,a) = ((hakhy ')l ha)
where hia = §24.

2 That is, as usual we can safely elide the distinction between internal and external
semi-direct products.
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In general there is a genuine choice of element of H — or equivalently, a gen-
uine choice of semidirect product, that is, of homomorphisms in our short exact
sequence — so that the actions of H on A and K on L, devoid of information
about how the two groups are connected, do not completely determine G with
its action on C. We also need an oracle to make the necessary choices, or, equiv-
alently, to be given the homomorphism g which determines which of the various
semidirect products of H with K is intended.

We should, however, observe two special cases. First, if the action of H on
A is such that there is always a unique element h such that ha = 24, then
each choice is unique, and the actions of H and K on A and L respectively will
completely determine the action of G on C. Second, if G is actually the direct
product K x H — that is, elements of K commute with elements of H — then the
action of G on C simplifies to the pointwise action

(k, h)(l,a) = (kl, ha)

as expected, there is no choice to be made, and again the actions of K and H on
L and A do completely determine the action of G on C'. This means, informally,
that in this special case an edit acts independently on the part of the concrete
model from C' that’s retained in the abstract view A and on the part which is
discarded by the abstraction.

5 Building Lenses from Sequences

To show that we really do have an alternative way of looking at this world, we
now need to consider the other direction.
Suppose we are given a short exact sequence of monoids

1-K—->G5H—1

in which G acts on a set C' (equipped with a trivial element 2¢) and H acts on a
set A (equipped with trivial element £24). We can read this as telling us how to
translate edits on C to edits on A: that is, it already gives us a (unidirectional)
model transformation.

If we are given, additionally, an injective function A : H — G such that p is
the identity function on H, we can regard this as a bidirectional transformation:
it tells us how to translate edits in both directions.

However, it does not necessarily correspond to a lens. Fundamentally the
issue is this. Lenses work in the absence of any intentional information about
the edits a user has made to the models: the lens only sees the modified models.
In principle, there is no reason why we should not define a different kind of
bidirectional transformation that does take notice of how the user achieved their
changes. Two different edits might have the same effect on a model in C' (rsp.
A), but their images under p (rsp. A) might legitimately have different effects
on a corresponding model in A (rsp. C).

We will always require that the action of G on C' and the action of H on A
are transitive, so that there always is some edit that will take the current model
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to the desired modified model. Beyond this, different choices might represent
different means of editing models.

For the rest of this section we restrict attention to those sequences from which
lenses can be defined:

Definition 11. A sequence of monoids as described above is lens-like if it sat-
isfies the following two conditions:

LL1: if g102¢ = g22¢ then pg1 24 = pg2024
LL2: for all g € G and for all h € H, we have

h(pg)24 = (1g) 24 = (Ah)g2c = g02¢

Note that any sequence which arises from a lens by the construction in Section @
is lens-like, as expected, by Lemmas [B] and

Given a lens-like sequence, we can define a get function as follows. Given
ce C,let g € G be any element such that g{2c = ¢; then

get ¢ =qof 19124
Lemma 18. get is well-defined

Lemma 19. get and the group action of G on C' satisfy the original compatibility
condition COMPAT.

Our definition of put involves making a choice, for each pair a € A and ¢ € C,
of an element of the group H which has the desired effect; different choices may
give different put functions, so our definition is parameterised on an oracle. This
is not surprising, in the light of the many choices of put function discussed earlier
(Lemma ).

Suppose we have an oracle which, given arguments a and ¢, returns h € H
such that a = h(get ¢). (At least one such element is always guaranteed to exist
by transitivity of the action of H on A.) Then

put a ¢ =g Ahc

Theorem 2. The put and get functions defined above comprise a lens (for any
oracle).

Theorem 3. If this sequence was in fact constructed from a lens | as described
in Section [f], then the lens we construct from the sequence is exactly | (and in
particular, it does not then depend on our choice of oracle).

Lemma 20. If, further, X is a group homomorphism, so that it splits the se-
quence, and in addition either of the following holds,

1. G and H are groups; or
2. we have the property that h(get ¢) = h/(get ¢) = (Ah)c = (AW )¢

then the lens is very well-behaved.



16 P. Stevens

6 Conclusions and Further Work

In this paper we have described an algebraic framework in which to think about
bidirectional transformations between sets of models. We have focused on an im-
portant special case, where one of the models is an abstraction of the other, and
we have shown how to translate key elements of the body of work on lenses into
algebraic terms. The lens framework was invented with the pragmatic needs of
transformation programmers in mind: yet, that it fits so neatly into the algebraic
framework suggests that the choice of laws it embodies are canonical within its
region of the transformation language design space.

Much remains to be done, especially in exploiting the algebraic framework to
give new (and/or easier) insight into how edit structures and transformations can
be composed, and to explore beyond the boundaries of the lens framework. On
the other hand, within those boundaries, it would be interesting to incorporate
the work on dictionary and skeleton lenses from [I] (where wreath products
clearly have a role to play) and on lenses up to equivalences from [3]. Looking
more widely, it is to be hoped that the algebraic approach will also be useful in
integrating different approaches to bidirectional transformations, including those
from the graph transformation community; this may shed light on the design
space of bidirectional transformation languages and thus contribute, ultimately,
to the development of more useful languages for model-driven development.

From a theoretical point of view, it would be interesting to widen the search for
connections into the fields of topology and category theory, and to understand
the connections with earlier work such as [4] better. Finally, a major area of
future work is to understand the connections with graph grammars, especially
triple graph grammars.

Acknowledgements. 1 thank the PC chairs of ICGT, Reiko Heckel and Gabriele
Taentzer, for the invitation to write this paper and for comments on a draft. I
thank Benjamin Pierce for many helpful discussions, and the many people who
have commented on my earlier work on transformations.

References

1. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
Resourceful lenses for string data. In: ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), San Francisco, California (January
2008)

2. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and Systems 29(3), 17
(2007); Preliminary version presented at the Workshop on Programming Language
Technologies for XML (PLAN-X) (2004); extended abstract presented at Principles
of Programming Languages (POPL) (2005)

3. Foster, J.N., Pilkiewicz, A., Pierce, B.C.: Quotient lenses. In: Proceedings of Inter-
national Conference on Functional Programming (to appear, 2008),
http://www.cis.upenn.edu/~ jnfoster/papers/quotient-lenses.pdf


http://www.cis.upenn.edu/~jnfoster/papers/quotient-lenses.pdf

4.

5.

Towards an Algebraic Theory of Bidirectional Transformations 17

Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent
views. ACM Trans. Database Syst. 13(4), 486-524 (1988)

Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open
questions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007.
LNCS, vol. 4735, pp. 1-15. Springer, Heidelberg (2007)

. Stevens, P.: A landscape of bidirectional model transformations. In: Post-

proceedings of GTTSE 2007 (to appear, 2008)



Discovery, Verification and Conformance of
Workflows with Cancellation

W.M.P. van der Aalst

Department of Mathematics and Computer Science,
Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

w.m.p.v.d.aalst@tue.nl

Abstract. Petri nets are frequently used for the modeling and analysis
of workflows. Their graphical nature, well-defined semantics, and analysis
techniques are attractive as information systems become more “process-
aware”. Unfortunately, the classical Petri net has problems modeling can-
cellation in a succinct and direct manner. Modeling cancellation regions
in a classical net is impossible or results in a “spaghetti-like” net. Can-
cellation regions are supported by many workflow management systems,
but these systems do not support advanced analysis techniques (process
mining, verification, performance analysis, etc.). This paper proposes to
use reset workflow nets (RWF-nets) and discusses (1) the discovery of
RWF-nets (i.e., extracting information from event logs to construct such
models), (2) the verification of RWF-nets (i.e., checking whether a work-
flow process has deadlocks, livelocks, etc.), and (3) the conformance of an
event log with respect to a RWF-net (i.e., comparing real with modeled
behavior).

Keywords: Petri Nets, Reset Nets, Soundness, Verification, and Process
Mining.

1 Introduction

Information systems have become “process-aware”, i.e., they are driven by pro-
cess models [26]. Often the goal is to automatically configure systems based on
process models rather than coding the control-flow logic using some conventional
programming language. Early examples of process-aware information systems
were called WorkFlow Management (WFM) systems [BIB0J36I50]. In more recent
years, vendors prefer the term Business Process Management (BPM) systems.
BPM systems have a wider scope than the classical WFM systems and are not
just focusing on process automation. BPM systems tend to provide more support
for various forms of analysis and management support. Both WFM and BPM
alm to support operational processes that we refer to as “workflow processes”
or simply “workflows”.

The flow-oriented nature of workflow processes makes the Petri net formalism
a natural candidate for the modeling and analysis of workflows. Figure [I] shows
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book_flight OK  fOK
bf
book_flight NOK fNO
pay
@_, book_hotel_ OK  hOK
start register bh c1 end
book_hotel_ NOK hNOK
c2 ec  cancel
_car_OK cOK e
book_car_NOK cNOK c7

Fig.1. A WF-net N1 modeling the booking of trips. Note that after one “NOK” the
trip will be cancelled eventually. There are 2% —1 = 7 situations modeled by transitions
cl,c2,...,,c7. Although the model is already complicated it fails to model that there
should not be any booking activities after the first “NOK”, because the trip will be
cancelled anyway.

a so-called workflow net (WF-net), i.e., a Petri net with a start place and an
end place such that all nodes are on some path from start to end. WF-nets were
introduced in ﬂII,IZl]E

The WF-net in Figure [Il models the booking of trips. After registration a
flight, a hotel, and a car are booked. Each of these booking activities can suc-
ceed (“OK”) or fail (“NOK?”). For reasons of simplicity, only the successful or
unsuccessful completion of these activities is shown in Figure [ (i.e., activities
are considered to be atomic). If all booking activities succeed, then a payment
follows. If one of them fails, a cancellation activity follows. Since each of the 3
booking activities can succeed or fail, there are 22 = 8 scenarios. Only for one
of these eight scenarios, payment is executed. For all other seven scenarios, the
trip is cancelled.

Figure [M is already rather complex but fails to model that there should not
be any unnecessary work, i.e., after the first failure (“NOK”), no other booking
activities should be executed as cancellation is inevitable. To model this, the
seven c-transitions (cl,c2,...,,c7) are not adequate as there are 3% — 2% = 19
possible states after registration and before payment/cancellation in which there
is at least one “NOK?”. Hence, 19 — 7 = 12 additional c-transitions are needed to

! According to Google Scholar (visited on April 23rd, 2008), [2] got more than thou-
sand references illustrating the interest in the topic. In fact, [2] is the second most
cited workflow paper after [30].
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capture this. Moreover, we simplified the model by assuming that the activities
are atomic. This is not realistic because the booking of the flight, the hotel, and
the car may happen in parallel and if one of them fails the other ones need to
be withdrawn. If we incorporate this in the model, there there are 43 — 33 = 37
states after registration and before payment/cancellation in which there is at
least one “NOK” B This implies that to fully model the example 37 c-transitions
are needed to remove the tokens from the right places. This illustrates that
cancellation is difficult to model in WF-nets. Therefore, we propose to use reset
arcs [2425129]. A reset arc removes tokens from a place but does not block the
corresponding transition if the place is empty. This is a very useful construct
that allows for the modeling of various cancellation operations supported by
contemporary workflow languages, e.g., the withdraw construct of Staffware, the
cancellation region of YAWL, the cancel event of BPMN; etc. In our example, the
37 c-transitions that are needed to remove the tokens from the right places, can
be replaced by a single transition with reset arcs. This illustrates the usefulness
and relevance of reset arcs. Therefore, we introduce the so-called Reset WorkFlow
nets (RWF-nets) as an extension to the classical WF-nets [112].

Taking RWF-nets as a starting point we explore a spectrum of analysis ques-
tions. Concretely, we investigate the following three challenges:

— Discovering RWF-Nets. Given an event log extracted from some database,
transaction log, or set of use cases/audit trails, we want to automatically infer
a process model. Since cancellation is important when modeling workflows,
it is also important to discover cancellations when observing systems and
processes.

— Verification of RWF-Nets. Many of the modern workflow languages offer
some form of cancellation. Hence, it is important to be able to verify such
models and point out deadlocks, livelocks, etc.

— Conformance with respect to a RWF-Net. The alignment of model and sys-
tems on the one hand and real-life processes on the other often leaves much
to be desired. Therefore, it is important to be able to compare event logs
with models. Since real-live processes and their models exhibit cancellation,
it is important to take this into account when checking conformance of event
logs and models.

The remainder of this paper is organized as follows. First, we present reset
workflow nets and introduce three challenges (discovery, verification, and con-
formance), followed by Section B] which introduces the concept of event logs.
Section Ml focuses on the verification of workflows with cancellation. Section
shows that conformance can be checked by “playing the token game” based on
the event log. Section [0l presents the challenge to discover reset workflow nets.
An overview of related work is provided in Section [ and Section Bl concludes
the paper.

2 Each of the booking activities has 4 states: enabled, running, succeeded (i.e., “OK”),
and failed (i.e., “NOK?”). Therefore, there are 4*> = 64 possible states and 3° = 27
of these states are non-failure states.
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2 Reset Workflow Nets

The WF-net in Figure [l is a nice illustration of the inability of classical Petri
nets to model cancellation. Therefore, we use reset nets, i.e., classical Petri net
extended with reset arcs.

Definition 1 (Reset net). A reset net is a tuple (P, T, F,W, R), where:

— (P, T,F) is a classical Petri net with places P, transitions T', and flow rela-
tion F C (P xT)U(T x P),

— W e F — IN\ {0} is an (arc) weight function, and

— ReT — 2P is a function defining reset arcs.

A reset net extends the classical Petri net with reset arcs. These are used to
remove all tokens from a place independent of the number of tokens. R(t) is the
set of places that are emptied when firing ¢. Also note that we are using arc
weights. Arc weights specify the number of tokens to be consumed or produced.
W (p,t) is the number of tokens transition ¢ consumes from input place p and
W (t,p) is the number of tokens transition ¢ produces for output place p.

Figure[2shows a reset net. In this example all arc weights are 1, i.e., W(x,y) =
1 for (z,y) € F. Transition ¢ has seven reset arcs connected to it. When c fires
all tokens are removed from places fOK, hOK, cOK, NOK, bf, bh, and bc. For
the enabling of ¢ these reset arcs is irrelevant, i.e., ¢ is enabled if and only if
there is a token in place NOK.

The state of a reset net, also referred to as marking, is described as a multiset.
Therefore, we introduce some notation. Let A be a set, e.g., the set of places P.
B(A) = A — N is the set of multi-sets (bags) over A, i.e., X € B(A) is a multi-
set where for each a € A: X (a) denotes the number of times a is included in the
multi-set. The sum of two multi-sets (X +Y), the difference (X —Y), the presence
of an element in a multi-set (x € X), and the notion of sub-multi-set (X <Y)
are defined in a straightforward way and they can handle a mixture of sets and
multi-sets. m4/(X) is the projection of X onto A’ C A, i.e., (ma (X))(a) = X(a)
ifae A" and (ma/(X))(a) =0ifa & A"

To represent a concrete multi-set we use square brackets, e.g., [fOK, hOK,
cOK] is the marking with a token in each of the “OK places” and [NOK?] is
the marking with three tokens in place NOK.

Because of the arc weights the classical preset and postset operators re-
turn bags rather than sets: ea = [V (@Y | (z,y) € F A a = y] and ae =
[yW @Y | (z,9) € F A a = z]. For example, epay = [fOK,hOK, cOK] is the
bag of input places of pay and paye = [end] is the bag of output places of pay.

Now we can formalize the notions of enabling and firing.

Definition 2 (Firing rule). Let N = (P,T,F,W, R) be a reset net and M €
B(P) be a marking.

— A transition t € T is enabled, notation (N, M)[t), if and only if, M > et.
— An enabled transition t can fire while changing the state to M’, notation
(N, M)[t)(N,M"), if and only if, M" = wp\ g (M — ot) + te.
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book_flight OK  fOK

bf

book_flight NOK hOK\ X pay

@_, book_hotel_OK cOK

start register bh end

book_hotel_NOK

book_car_OK NOK ec cancel

bc

book_car_NOK

Fig.2. A RWF-net N2> modeling the booking of trips. Note that unlike the WF-net in
Figure[Il unnecessary work is avoided. Moreover, the number of nodes to handle the can-
cellation is constant and the number of arcs is linear in the number of booking activities
(flight, hotel, car, etc.) and activity states (enabled, running, succeeded, failed, etc.).

The resulting marking M’ = 7p\ g) (M — ot ) +te is obtained by first removing
the tokens required for enabling: M — et. Then all tokens are removed from the
reset places of ¢ using projection. Applying function 7p\ g(;) removes all tokens
except the ones in the non-reset places P\ R(t). Finally, the specified numbers
of tokens are added to the output places. Note that te is a bag of tokens.

(N, M)[t)(N,M’) defines how a Petri net can move from one marking to
another by firing a transition. We can extend this notion to firing sequences.
Suppose o = (t1,ta,...,t,) is a sequence of transitions present in some Petri net
N with initial marking M. (N, M)[o)(N, M’) means that there exists a sequence
of markings (Mo, My, ..., M,) where My = M, M,, = M’, such that for any 0 <
i <n: (N, M;)[ti+1)(N, M;41). Using this notation we define the set of reachable
markings R(N, M) as follows: R(N, M) = {M' € B(P) | 3,(N, M)[o)(N,M’)}.
Note that by definition M € R(N, M) because the initial marking M is trivially
reachable via the empty sequence (n = 0).

We would like to emphasize that any reset net with arc weights can be trans-
formed into a reset net without arc weights, i.e., all arcs have weight 1. Therefore,
in proofs can assume arc weights of 1 when convenient and still use them in con-
structs. See [0] for a construction.
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The idea of a workflow process is that many cases (also called process in-
stances) are handled in a uniform manner. The workflow definition describes
the ordering of activities to be executed for each case including a clear start
state and end state. These basic assumptions lead to the notion of a WorkFlow
net (WF-net) [IJ2] which can easily be extended in the presence of reset arcs.

Definition 3 (RWF-net). An reset net N = (P, T,F,W,R) is a Reset Work-
Flow net (RWF-net) if and only if

— There is a single source place i, i.e., {p € P | ep=10}={i}.

— There is a single sink place o, i.e., {p € P | pe =0} = {o}.

— FEvery node is on a path from i to o, i.e., for anyn € PUT: (i,n) € F* and
(n,0) € F*.

— There is no reset arc connected to the sink place, i.e., Vier 0 & R(t).

Figures [l and 2l both show a RWF-net. The requirement that Vi;er o ¢ R(t) has
been added to emphasize that termination should be irreversible, i.e., it is not
allowed to complete (put a token in o) and then undo this completion (remove
the token from o).

Let us now compare figures [Il and ] showing RWF-nets N; and N, respec-
tively. In the the original net without reset arcs (N7) the number of cancellation
transitions is exponential in the number of bookings while in the second net (/N2)
there is just one cancellation transition and the number of reset arcs is linear in
the number of bookings. Also note that in Ny tokens are also removed from the
input places of the booking activities to make sure than no unnecessary work
is conducted. Extending N; to obtain the same behavior requires the addition
of 12 more cancellation transitions. This clearly shows the benefits of using re-
set arcs. Moreover, figures [[l and 2] also illustrate the need for the modeling of
cancellations in real-life workflow processes.

3 Event Logs

Traditionally, the focus of workflow analysis at design-time has been on model-
based verification and simulation while at run-time the focus has been on mea-
suring simple key performance indicators such as flow times, service levels, etc.
Because more and more information about processes is recorded by information
systems in the form of so-called “event logs”, it seems vital to also use this
information while analyzing processes. A wide variety of process-aware infor-
mation systems [26] is recording excellent data on actual events taking place.
ERP (Enterprise Resource Planning), WFM (WorkFlow Management), CRM
(Customer Relationship Management), SCM (Supply Chain Management), and
PDM (Product Data Management) systems are examples of such systems. De-
spite the omnipresence and richness of these event logs, most software vendors
have been focusing on relatively simple questions under the assumption that the
process is fixed and known, e.g., the calculation of simple performance metrics
like utilization and flow time. However, in many domains processes are evolv-
ing and people typically have an oversimplified and incorrect view of the actual
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business processes. Therefore, process mining techniques attempt to extract non-
trivial and useful information from event logs. One aspect of process mining is
control-flow discovery, i.e., automatically constructing a process model (e.g., a
Petri net) describing the causal dependencies between activities [TTIT2IT7120].

Later in this paper, we discuss process discovery and conformance checking
using RWF-nets. These are particular process mining techniques that require
event logs as input. Therefore, we define the notion of an event log.

Definition 4 (Event log). Let A be a set of activities. A trace o can be de-
scribed as a sequence of activities, i.e., o € A*. An event log L is a multiset of
traces, i.e., L € IB(A*).

A trace can be considered as the execution path of a single process instance
(case). Note that this is a rather simplified view, i.e., in real life events have
timestamps (When did the activity happen?), resource information (Who ex-
ecuted the activity?), data (What information was used and produced?), etc.
However, for this paper we focus on the control-flow only. A trace possible accord-
ing to Figure Bl is o = (register, book flight NOK, ¢, cancel). An example event
log consisting of 5 traces is L = [(register, book hotel NOK, c, cancel)?, (register,
book hotel OK, book car OK,book flight OK, pay)?].
As already indicated in Section [I] this paper focuses on three challenges:

— Discovering RWF-Nets. Given an event log L, we want to infer a
RWF-net N.

— Verification of RWF-Nets. Given a RWF-net N, we want to discover errors
such as deadlocks, etc.

— Conformance with respect to a RWF-Net. Given an event log L and a RWF-
net N, we want to discover discrepancies between L and N.

The remainder of this paper will focus on these three challenges. We start by
elaborating on the verification of RWF-nets.

4 Verification of RWF-Nets

Based on the notion of RWF-nets we now investigate the fundamental question:
“Is the workflow correct?”. If one has domain knowledge, this question can be
answered in many different ways. However, without domain knowledge one can
only resort to generic questions such as: “Does the workflow terminate?”, “Are
there any deadlocks?”, “Is it possible to execute activity A?”, etc. Such kinds of
generic questions triggered the definition of soundness [12]. Different soundness
notions have been proposed, e.g., k-soundness [32[33], weak soundness [39], gen-
eralized soundness [32I33], relaxed soundness [2]], etc. However, here we focus
on the original definition given in [IJ.

Definition 5 (Classical soundness [1)2]). Let N = (P, T, F,W, R) be a RWF-
net. N is sound if and only if the following three requirements are satisfied:
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— Option to complete: ¥Vyep(n,fi)) [0] € R(N, M).
— Proper completion: Varer(n,i) (M > [o]) = (M = [o]).
— No dead transitions: Yier Inrern,i) (N, M)[t).

A RWF-net such as the one sketched in Figure [l is sound if and only if the
following three requirements are satisfied: (1) option to complete: for each case
it is always still possible to reach the state which just marks place end, (2) proper
completion: if place end is marked all other places are empty for a given case,
and (3) no dead transitions: it should be possible to execute an arbitrary activity
by following the appropriate route through the RWF-net. It is easy to see that
N7 and Ny (figures [l and 2]) are sound.

bh end

book_hotel_

HQ—»

ec cancel

car_|

book_car_NOK

Fig. 3. A RWF-net N3 that is not sound. From the initial marking [start] e.g. the mark-
ing shown (i.e., [bh, fOK, end]) is reachable. This shows that the first two requirements
stated in Definition Bl do not hold.

RWF-net N3 shown in Figure[3is an example of a workflow that is not sound.
Since ¢ does not remove tokens from the places before the booking activities,
tokens may be left behind. In fact, it is still possible to book a hotel after
transition cancel has put a token in end (cf. Figure B]). This example shows that
it is easy to make errors when modeling workflows with cancellation.

In [I2] it was shown that soundness is decidable for WF-nets, i.e., RWF-
nets without reset arcs. A WF-net N = (P, T, F) (without reset arcs and arc
weights) is sound if and only if the short-circuited net (N, [i]) with N = (P,T' U
{t*}, FU{(o,t*), (t*,)}) is live and bounded. Since liveness and boundedness are
both decidable, soundness is also decidable. For some subclasses (e.g., free-choice
nets), this is even decidable in polynomial time [112].
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Since the mid-nineties many people have been looking at the verification of
workflows. These papers all assume some underlying model (e.g., WF-nets) and
some correctness criterion (e.g., soundness). However, in many cases a rather
simple model is used (WF-nets or even less expressive) and practical features
such as cancellation are missing. Many practical languages have a cancellation
feature, e.g., Staffware has a withdraw construct, YAWL has a cancellation re-
gion, BPMN has cancel, compensate, and error events, etc. Therefore, it is in-
teresting to investigate the notion of soundness in the context of RWF-nets, i.e.,
WF-nets with reset arcs [24I25129]. Unfortunately, soundness is not decidable
for RWF-nets with reset arcs.

Theorem 1 (Undecidability of soundness). Soundness is undecidable for
RWF-nets.

For a proof we refer to [6]. Although far from trivial, it is possible to construct
a RWF-net N’ given an arbitrary reset net N such that N’ is sound if and only
if M’ is not reachable from M in N. Since reachability is undecidable for reset
nets [24125)29], this implies that soundness is also undecidable for RWF-nets.

Theorem [T] is non-trivial because properties such as coverability (Is it possible
to reach a marking M’ that covers M, i.e., M’ > M?) are decidable for reset nets.

Note that although soundness is undecidable for RWF-nets, for many repre-
sentatives of this class, it may still be possible to conclude soundness or non-
soundness. There may be rules of the form “If WF-net N has property X, then
N is sound” or “If WF-net N has property Y, then N is not sound”. As shown
in [41] it is possible to find many errors using such an approach. In [4I] a set
of more than 2000 process models from practice (including more than 600 pro-
cesses from the SAP reference model) was analyzed. It could be shown that at
least 10 percent of these models is not sound. These examples show that even if
soundness is undecidable, errors can be discovered. Similarly, for many models it
is still possible to guarantee soundness even if the general verification problem
is undecidable.

In the related work section, we provide some pointers to analysis techniques
using brute force (e.g. coverability graphs), structural techniques (invariants),
and/or reduction rules. For example, RWF-nets can be reduced using the reduc-
tion rules presented in [48] to speed-up analysis and improve diagnostics.

5 Conformance with Respect to a RWF-Net

As indicated in Section Bl lion’s share of analysis efforts has been devoted to
model-based analysis (verification, simulation, etc.) and measuring simple per-
formance indicators. However, given the abundance of event logs it is interesting
to “discover models” based on event logs (see Section [G]) or to measure the con-
formance of existing models based on the real behavior recorded in logs. In this
section, we focus on the latter question, i.e., “Do the model and the log conform
to each other?”. Conformance checking aims at the detection of inconsistencies
between a process model N and its corresponding execution log L, and their
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quantification by the formation of metrics. In [4l42/43] two basic conformance
notions have been identified (fitness and appropriateness). First of all, the fit-
ness between the log and the model is measured (i.e., “Does the observed process
comply with the control flow specified by the process model?”). Second, the ap-
propriateness of the model can be analyzed with respect to the log (i.e., “Does
the model describe the observed process in a suitable way?”). Appropriateness
can be evaluated from both a structural and a behavioral perspective [43].

In this paper, we only consider fitness. However, it is important to stress that
a model with good fitness may not be appropriate. For example, the model with
just a single place that serves as a self-loop for all transitions 7" is able to parse
any trace in T* [4I42/43].

One way to measure the fit between event logs and process models is to
“replay” the log in the model and somehow measure the mismatch. The replay
of every trace starts with the marking of the initial place in the model, e.g.,
[start] in Figure[ll Then, the transitions that belong to the logged events in the
trace are fired one after another. While replay progresses, we count the number
of tokens that had to be created artificially (i.e., the transition belonging to the
logged event was not enabled and therefore could not be successfully executed)
and the number of tokens that were left in the model, which indicate that the
process was not properly completed. Based on counting the number of missing
tokens during replay and the number of remaining tokens after replay, we define
a function f that has a value between 0 (=poor fitness) and 1 (=good fitness).

Definition 6 (Fitness). Let N = (P,T,F,W,R) be a RWF-net and let L €
B(A*) be an event log where we assume that T = A. Let k be the number
of traces in event log L. For each log trace i (1 < i < k), m; is the number
of missing tokens, r; is the number of remaining tokens, c; is the number of
consumed tokens, and p; is the number of produced tokens during log replay of
trace i. The token-based fitness metric [ is defined as follows:

Z?fl i 1 Z?fl Ti
- a (1 - k_ )
>ic1Pi

Note that the above definition is rather informal. In [42/43] this metric was
defined for WF-nets, i.e., workflows without cancellation. However, as shown
here the metric can easily be extended for RWF-nets. Let us consider some
trace 4 consisting of a sequence of n events o; = (e1,ea,...,e,) € T*. The
initial state of N is [i] and the desired end state is [o]. If (IV, [¢])[o:) (N, [0]),
then there is a perfect fit, i.e., the trace can be replayed without leaving to-
kens behind. So, (N, [i])[o:)(N,[o]) if and only if f(N,[o;]) = 1. Let o1 =
(register, book hotel NOK, c, cancel). It is easy to see that f(Nz,[o1]) = 1, i.e.,
the trace can be replayed without missing or remaining tokens. (Recall that Ny is
the RWF-net shown in Figure[2) Now consider oo = (register, book hotel OK, ¢,
pay). Tt is possible to execute the partial trace (register, book hotel OK). How-
ever, to execute ¢, there has to be a token in NOK (i.e., one token is missing). If
we force ¢ to fire anyway, the resulting state is [ec]. In this state, we cannot fire
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pay as there are three missing tokens. This brings the number of missing tokens
to 4. After forcing pay to fire, the resulting state is [ec, end]. Hence one token
remains in place ec.

We can show the calculation of the values ma, 72, co, and py step-by-step us-
ing four temporary variables. Initially, m = 0 (no missing tokens), » = 0 (no
remaining tokens), ¢ = 0 (no consumed tokens), and p = 1 (prior to the execu-
tion of register the net is in state [start], so the environment already put a to-
ken in the initial place). After start fires state [bf, bh, bc] is obtained and m = 0,
¢c=0+41=1,and p = 143 = 4. After book hotel OK fires marking [bf, bc, hOK|
is reached and m = 0, c =1+ 1 =2 and p = 4+ 1 = 5. After ¢ fires state
[ec] is obtained and m = 0 + 1 = 1 (missing token in NOK), ¢ =2+ 4 =6
(four tokens are removed, one by a “normal” arc and three by reset arcs), and
p =541 = 6. After pay fires state [ec, end] is reached and m = 1+ 3 = 4,
c=6+4+3 =9 and p = 6+ 1 = 7. Finally, the token is removed from end
and the remaining token is recorded, i.e., c = 94+ 1 = 10 and » = 1. Note that
in the calculation the marking of the source place is considered to be a produc-
tion step while the removal of the token from the sink place is considered to be a
consumption step. Also note that the removal of tokens through reset arcs is cal-
culated as a consumption step. Hence, my = 4, 719 = 1, co = 10, and po = 7.

Therefore, f(Na,[o2]) = 5(1 — ) + 3(1 — 1) = 3} = 0.73. The fitness of

F(Na,[o1,02]) = 5 (1 - 701140) +,(1- (7)1%) = 1 = 0.85.

Several definitions of fitness are possible. For example, Definition @ gives equal
weights to missing tokens and remaining tokens. By replacing the weights % by
e.g. weight % and weight } in Definition [, more emphasis is put on problems
related to missing tokens and less on proper termination.

Several metrics for fitness and various appropriateness notions have been im-
plemented in ProM for WF-nets [42/43]. As shown in this section, these metrics
can be adapted for RWF-nets in a straightforward manner. Figure@illustrates the
current functionality of ProM. For a specific log, the fitness is calculated with re-
spect to the WF-net shown in Figure[ll As Figure@lshows the fitness is 0.80908644
(metric is shown in top right corner). Several places are annotated with one or two
numbers. Positive numbers refer to remaining tokens (i.e., Zle r; for a particular
place) and negative tokens refer to missing tokens (i.e., Zle m, for a particular
place). The input place of cancel (i.e., place ec in Figure[l]) has the number “—25”
indicating that in the whole log there were 25 situations where according to the
log cancel had to fire while according to the model this was not possible because
ec was empty. As shown in Figure[d] nice diagnostics can be given showing were
in the model mismatches occur and how severe they are.

Note that the transitions cl,¢2,...,,¢7 in Figure [ are depicted differently in
the conformance checker (cf. Figure ). The reason is that there are no events
related to cl,c2,...,,c7 in the log, i.e., these are “silent transitions” and cannot

be observed. The conformance checker in ProM can deal with such situations
using state-space analysis. The same technique is used to deal with “duplicates”,
i.e., two transitions having the same label. See [43] for details. Interestingly, all
ideas from [43] can be generalized to workflows with cancellation.
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Fig. 4. The conformance checker in ProM applied to the WF-net shown in Figure [I]
and an event log containing 42 cases and 172 events

6 Discovering RWF-Nets

The last challenge addressed in this paper is the discovery of workflows with
cancellation, i.e., based on some event log L. we want to automatically construct
a RWF-net N that “captures” the behavior seen in the log. Many techniques
have been proposed in literature [IIRIT2IT7I2022123[49]. However, none of these
techniques discovers workflow models with cancellation features.

Figure Bl illustrates the concept of process discovery. Given an event log with-
out any explicit process information, we want to discover a process model. On
the right-hand side of Figure[5 a fragment of a larger event log is shown. As dis-
cussed in Section B event logs tend to have more information (e.g., timestamps,
data, etc.), but here was assume that an event log is simply a multiset of traces.
For example, the first trace in Figure [ refers to a scenario were all bookings
succeeded. The a-algorithm [I1] is a very basic process mining algorithm that is
able to discover the model shown in Figure[Bl Since the traces shown correspond
to possible traces of the WF-net N1 shown in Figure[ll it is nice to see that the
a-algorithm is actually able to discover N7 (modulo renaming of places). The a-
algorithm [IT] is very simple but not very suitable for real-life applications. The
algorithm makes strong assumptions about the routing constructs to be used
and the completeness of the log. For example, it is not realistic that one actually
observes the routing transitions cl, ¢2,...,,c7. Unlike transition cancel which is
a real activity, cl,¢2,...,,c7 have only been added for routing purposes. For-
tunately, better process mining algorithms are available today (see Section [7]).
However, these do not capture cancellation as the underlying models do not allow
for a direct representation of such constructs.
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register book flight OK book hotel OK book car_ OK pay
register book_hotel OK book_flight OK book car OK pay
register book_hotel NOK book_flight OK book_car_OK c2 cancel
register book car_ OK book hotel OK book flight OK pay
[t s vt bews tuns register book hotel NOK book_ flight OK book_car OK c2 cancel
Lo o 5880 register book flight OK book hotel OK book car OK pay

m register book flight OK book_hotel OK book car NOK cl cancel

et
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register book_ flight OK book_car_ OK book_hotel OK pay
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compieie complete — — e = it
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Fig. 5. Based on a complete event log, the a-algorithm [IT] can discover the WF-net
shown in Figure [

The goal is to develop process mining algorithms that discover cancellations
in event logs and treat cancellation as a basic construct. Concretely, we want
to discover a RWF-net N with “suitable” reset arcs based on some event log L.
Since we do not what to develop a process mining algorithm from scratch, we
try to extend existing techniques.

The basic idea behind most of the existing process mining algorithms is to
add a causal dependency based on an analysis of the log. For example, a >, b iff
there is a trace in L where « is directly followed by b and a —w b iff @ >y b and
b #w a. Using such information places are added, e.g., a and b are connected
through some place if a —y, b. Hence, the places provide information about one
activity triggering another activity. However, there is no explicit information in
the log on disabling events (i.e., there is no “negative information” in the log).
Therefore, we suggest to use existing algorithms and do some post-processing
using reset arcs as a cleanup. Below is an informal sketch of the basic idea:

Step 1. Given an event log L construct a RWF-net N = (P, T, F, W, R) using
conventional process mining techniques (initially R(t) = 0 for all ¢t € T). It
is best to use a technique that avoids blocking transitions, i.e., no missing
tokens (m;) in the sense of Definition Gl

Step 2. Construct a relation %1 C T x T such that a % b if and only if a is
never followed by b.

Step 3. Replay the log in N = (P, T, F, W, R) and record places with remain-
ing tokens and calculate the fitness. If there are no remaining tokens or all
alternatives below have been tried, return N.

Step 4. Pick a place p that has the most remaining tokens. Let 7}, be the set
of output transitions of p, i.e., T}, = pe.

Step 5. T ={t' € T\ T}, | Vier, t' Lt N p & R(t')}, i.e., transitions that
“seem” to disable T}, transitions but do not actually disable these transitions
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book_flight_NOK

Fig. 6. Using regions, a Petri net is discovered that captures the behavior but where
tokens are left behind. The fitness is 0.897 as shown in top right corner.

yet. If T" = ), then go to Step 3, otherwise pick a ¢, € T". Take the “earliest”
transition in 7", e.g., using a relation similar to >>,.

Step 6. Add a reset arc to N connecting p and t,, i.e., N' = (P,T,F,W,R’)
where R/(t,) = R(t,) U {p} and R'(t) = R(t) for all other ¢.

Step 7. Return to Step 3 using N = N'.

Note that the above is not indented to be a concrete algorithm. It is merely
a solution approach that needs to be made specific in the context of a concrete
process mining algorithm. To illustrate this let us use a log Lo that contains all
possible behaviors of the RWF-net shown in Figure 2l In the log transition c is
not visible as it is just there for routing purposes, i.e., an example trace in Lo
is (register, book flight NOK , cancel). Applying the a-algorithm to Lo gives an
incorrect and rather meaningless result because of the invisible routing activity ¢
and the cancellation construct. If we apply the region-based approach presented
in [9)44], then we obtain the Petri net shown in Figure [l The region-based
approach guarantees that it is possible to replay all traces in the log without
missing tokens, but there may be remaining tokens. In terms of Definition [G]
this means m; = 0 and 7; > 0 for any trace i. This makes the technique of [9/44]
suitable for the post-processing mentioned above. Note that there are six places
where tokens may remain.

The Petri net in Figure [flis able to execute the sequence (register, book flight
NOK, cancel) but leaves two tokens behind. Note that the central place in-
between register and pay acts as a mutex place blocking all activities after the
first “NOK”. Also note that there is a not a sink place in Figure [f i.e., it is
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not a WF-net. This is due to the implementation of the plug-in in ProM and
is merely a technicality that can be resolved easily (e.g., by adding a dummy
end transition). Using the 7 steps described above reset arcs are added from the
six places with remaining tokens to transition cancel. However, also superfluous
reset arcs are added, e.g., from some of places with remaining tokens to pay.
This can be optimized in various ways. First of all, additions that do not improve
fitness can be discarded. Second, improving T to filter out transitions that do
not appear in traces that have problems (i.e., if there is no problem related to
sequences where transition ¢ appears, then no reset of ¢ on p is needed). Both
optimizations would get rid of the superfluous reset arcs. The resulting model
nicely captures the behavior recorded in the log including the cancellation after
the first “NOK” result.
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complete

e |

cancel
complete

register
complete

Fig. 7. A Petri net constructed using language-based regions theory [45]

There are alternatives to the post-processing approach described above. First
of all, it would be relatively easy to extend the genetic miner in ProM [740]
to deal with reset arcs. For genetic mining basically only a good representa-
tion (RWF-nets) and fitness function (Definition [f]) are needed [740]. Second,
it would be interesting to extend mining approaches based on language-based
regions [45] to come up with special arcs. Figure [7] shows the application of the
language-based region miner in ProM using a very conservative setting for log
Lo, i.e., the same log as used to construct Figure [(l Because of the conserva-
tive setting just a few places were added, however, a correct characterization of
the behavior is given. This shows the basic principle that a Petri net without
any places can parse any log and that adding places corresponds to adding con-
straints. Since this approach uses integer linear programming as a basis, it is
versatile and seems to be a good platform to add special types of arcs such as
reset arcs, inhibitor arcs, etc.
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7 Related Work

Since the mid nineties, many researchers have been working on workflow verifi-
cation techniques. It is impossible to give a complete overview here. Moreover,
most of the papers on workflow verification focus on rather simple languages,
e.g., AND/XOR-graphs which are even less expressive than classical Petri nets.
Therefore, we only mention the work directly relevant to this paper.

The use of Petri nets in workflow verification has been studied extensively. In
[12] the foundational notions of WF-nets and soundness are introduced. In [32/33]
two alterative notions of soundness are introduced: k-soundness and generalized
soundness. These notions allow for dead parts in the workflow but address prob-
lems related to multiple instantiation. In [39] the notion of weak soundness is pro-
posed. This notion allows for dead transitions. The notion of relaxed soundness is
introduced in [21]. This notion allows for potential deadlocks and livelocks, how-
ever, for each transition there should be at least one proper execution.

Most soundness notions (except generalized soundness [32I33]) can be inves-
tigated using classical model checking techniques that explore the state space.
However, such approaches can be intractable or even impossible because the
state-space may be infinite. Therefore, alternative approaches that avoid con-
structing the (full) state space have been proposed. [3] describes how structural
properties of a workflow net can be used to detect the soundness property. [A6/47]
presents an alternative approach for deciding relaxed soundness in the presence
of OR~joins using invariants. The approach taken results in the approximation
of OR-join semantics and transformation of YAWL nets into Petri nets with
inhibitor arcs. In [51] it is shown that the backward reachability graph can be
used to determine the enabling of OR-joins in the context of cancellation. In the
general area of reset nets, Dufourd et al.’s work has provided valuable insights
into the decidability status of various properties of reset nets including reach-
ability, boundedness and coverability [24I25129]. Moreover, in [48] it is shown
that reduction rules can be applied to reset nets (and even to inhibitor nets) to
speed-up analysis and improve diagnostics.

Since the mid-nineties several groups have been working on techniques for
process mining [TTIRIT2TTI20022I23/49], i.e., discovering process models based
on observed events. In [I0] an overview is given of the early work in this do-
main. The idea to apply process mining in the context of workflow management
systems was introduced in [I2]. In parallel, Datta [20] looked at the discovery
of business process models. Cook et al. investigated similar issues in the context
of software engineering processes [17]. Herbst [34] was one of the first to tackle
more complicated processes, e.g., processes containing duplicate tasks.

Most of the classical approaches have problems dealing with concurrency.
The a-algorithm [IT] is an example of a simple technique that takes concurrency
as a starting point. However, this simple algorithm has problems dealing with
complicated routing constructs and noise (like most of the other approaches
described in literature). In [22I23] a more robust but less precise approach is
presented. The classical “theory of regions” [T3IT4IT8IT27] can also be used
to discover Petri-net-based models as shown in [0/44]. Recently, some work on
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language-based regions theory appeared [T64537I38]. In [T6J45] it is shown how
this can be applied to process mining.

In this paper we do not consider issues such as noise. Heuristics [49] or genetic
algorithms [7J40] have been proposed to deal with issues such as noise.

For an overview of related work with respect to conformance checking we re-
fer to [442l43]. Note that so far no process mining techniques (discovery and/or
conformance) have been proposed for models with cancellation such as RWF-nets.

To conclude this related work section, we provide some pointers to the rela-
tionships between Petri nets and graph grammars/transformations [2831]. The
relationships between Petri nets and graph grammars have been well known for
quite some time [35]. In fact, graph grammars can be seen as a proper gen-
eralization of Petri nets. The firing of a transition corresponds to applying a
“production” to a graph while firing sequences correspond to graph derivations.
Reset arcs can easily be encoded in terms of graph grammars. In Section 3.2 of
[31], extensions of graph rewriting using multi objects are discussed, i.e., uni-
versally quantified operations are used to remove all objects of a particular type
in one go. Such ideas directly apply to reset nets. In [I5] the relation between
“extended Petri nets” and graph rewriting is investigated in detail. In this pa-
per, Petri nets having read, inhibitor and reset arcs are mapped onto graph
grammars. Thus far little work has been done on the relation between graph
grammars/transformations on the one hand and workflow verification and pro-
cess discovery on the other. It would be interesting to explore this further.

8 Conclusion

In this paper we explored various analysis questions related to workflows with
cancellations. As a modeling language we used reset workflow nets (RWF-nets).
Taking RWF-nets as a starting point we explored challenges related to discovery
(process mining), verification, and conformance. For example, it was shown that
soundness is undecidable for RWF-nets. However, despite this result, analysis
is possible in most cases using e.g. reduction rules and structural techniques as
shown in [48]. Conformance checking can be done in a straightforward manner
by adapting the techniques described in [42043] to RWF-nets. From a process
mining viewpoint, no prior work has been done on the discovery of processes
with cancellations. In this paper we made some initial suggestions to develop
process discovery algorithms for RWF-nets. Given the importance of cancellation
in workflows, it is interesting to develop techniques and tools to further address
the challenges mentioned in this paper.
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Abstract. The international development partnership AUTOSAR strives for re-
use and exchange of SW components along various dimensions: between OEM
and supplier, between vehicle platforms, between electronic networks, and be-
tween individual electronic control units (ECUs). To enable the exchange an
abstraction layer — the AUTOSAR runtime environment (RTE) — has been
defined as a set of services provided to applications. Typical services are com-
munication via buses, memory access, or diagnostic support. The services are
implemented by several stacks of basic SW-modules being highly configurable
to support the large variety of ECUs. By configuration, the same SW module
can be used for those ECUs with a given micro-controller abstraction.

To exploit the variability in a structured approach, AUTOSAR defined a
methodology which heavily makes use of so-called templates capturing all in-
formation of an electronic vehicle network. The data-structures are defined by a
meta-model allowing for a consistent definition of the templates.

The development approach adopted by AUTOSAR is related to model-
driven development. At the first step in the methodology, an overall system de-
scription is defined showing the logical architecture of the SW system. Each
SW component is described by an instance of the SW-template. When the SW
system shall be applied to an electronic network, the dedicated HW resources
must be described as well. So, the properties and capabilities of ECUs and
buses are captured by an ECU resource template. During the next step, a map-
ping of the logical to the physical architecture has to be found. This task is of
high importance, since it determines the overall system performance. Once the
mapping is established, configuration files for individual ECUs of the network
are generated. Based on the configuration the appropriate SW-components can
be loaded onto the ECU and the required communication channels are estab-
lished such that the SW application can be successfully executed.

Currently, there is no strong tool-support for mapping besides plain editors.
Rule-based transformations may be applied to define and realize (semi-) auto-
matic mapping strategies for the different areas in the system and ECU resource
template.
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Abstract. The algorithm of Cocke, Younger, and Kasami is a dynamic
programming technique well-known from string parsing. It has been
adopted to hypergraphs successfully by Lautemann. Therewith, many
practically relevant hypergraph languages generated by hyperedge re-
placement can be parsed in an acceptable time. In this paper we extend
this algorithm by hypergraph completion: If necessary, appropriate fresh
hyperedges are inserted in order to construct a derivation. The resulting
algorithm is reasonably efficient and can be directly used, among other
things, for auto-completion in the context of diagram editors.

Keywords: hypergraph completion, hyperedge replacement, parsing.

1 Introduction

Hypergraphs are an extension of graphs where edges are allowed to visit an arbi-
trary number of nodes. A well-known way of describing hypergraph languages are
hyperedge replacement grammars HRG [I]. Although restricted in power, this
formalism comprises several beneficial properties: It is context-free and still quite
powerful. Grammars are comprehensible, and reasonably efficient parsers can be
defined for practical languages. In general, parsing is NP-complete though.

Lautemann has provided a detailed discussion of the complexity of hyperedge
replacement [2]. He also has suggested a hypergraph parsing algorithm straight-
forwardly adopting the dynamic programming approach proposed by Cocke,
Younger, and Kasami CYK [3] for string parsing. Given a string s = a;...a,, the
CYK algorithm computes a table where the cell in row i and column j contains
derivation trees that derive the substring a;...a;1;—1. This table can be com-
puted bottom up by joining two appropriate entries at a time — provided that
the grammar is in Chomsky normalform CNF, which is no restriction.

An extended version of Lautemann’s CYK-style algorithm for hypergraphs
has been proposed by the third author and incorporated into the diagram editor
generator DIAGEN [4]. In analogy to the string setting, HRGs are transformed to
a kind of CNF first. However, the parsing algorithm does not need to compute a
table but rather n layers where n is the number of hyperedges in the hypergraph.
Thereby, layer k is computed by combining two “compatible” derivation trees
from layers ¢ and j at a time where i + j = k.

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 39[53] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Hypergraphs as a model for diagrams

Diagram editors are an important area of application for hypergraph parsing
since hypergraphs have appeared to be well-suited as a model for diagrams. For
instance, in DIAGEN the abstract syntax of a diagram language is defined using
HRGs, and the parser checks which parts of a freely drawn diagram are correct.
In Fig. [ an example Nassi-Shneiderman-Diagram NSD and a corresponding
hypergraph model are shown. Hyperedges are represented by boxes with the
particular label inside. Nodes are represented as circles; the so-called external
ones as black dots. Lines (tentacles) indicate that a hyperedge visits a node. The
hypergraph language of NSDs can be defined using an HRG as we see later.

In this paper we propose an algorithm for hy-
pergraph completion with respect to HRGs. Hyper-

graph completion can be used, among other things, — n:=0

as a powerful and flexible base for diagram com- -
pletion. Indeed, content assist in diagram editors Y XEVell 7
is just as valuable as conventional content assist as X2 .
known from modern text editors and integrated de- n=n |

velopment environments. The editor user normally
does not only want to be notified when his diagram
is incorrect, but is also interested in the particular
problem and possible solutions. For instance, the insertion of a simple statement
at the right place is already sufficient in order to repair the diagram shown in
Fig. 2l Such suggestions are particularly important for free-hand editors like the
ones generated with DIAGEN. By providing assistance we can effectively com-
bine the advantages of structured and free-hand editing: The user is allowed to
draw his diagram with maximal freedom, but guidance is provided if needed.

The information required for some assistance can be gathered by the parser.
It is possible to infer places where new hyperedges may be added to complete a
given hypergraph, although those might not be uniquely determined. We have
discussed a first, logic-based approach in [5]. The proposed framework of graph
parser combinators follows a top-down approach with backtracking, thus partial
results might be computed several times.

Fig. 2. Incomplete NSD
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In this paper we substantially improve efficiency by using dynamic program-
ming techniques. We basically extend Lautemann’s CYK-style algorithm to sup-
port the computation of hypergraph completions. Our key idea is to pretend a
(limited) number of hyperedges while parsing. Therefore, several fresh hyper-
edges are introduced initially, which visit fresh, special nodes. Later, these nodes
can be glued with nodes already occurring in the input hypergraph.

We proceed as follows: First, we introduce hypergraphs and HRGs in Sect.
using NSDs as a running example. Thereafter, we describe our parser and how
it computes so-called complement hypergraphs (Sect. B]). This is the main con-
tribution of this paper. In Sect. ] we discuss related work. Finally, we sketch
future prospects and conclude the paper (Sect. H).

2 Hypergraphs and Hyperedge Replacement Grammars

In this section the formal basics are introduced. Most definitions are close to [I]
and [2]. We just recapitulate them to make this paper self-contained.

Let C be an arbitrary, but fixed set of labels and let type: C' — IN be a typing
function for C. Let V denote a universe of nodes. A hypergraph H over C' is a
tuple (Vi, Eg, atty, laby, exty) where Vg C V is a finite set of nodes, Ey is
a finite set of hyperedges, atty : Ey — Vj; is a mapping assigning a sequence
of pairwise distinct attachment nodes attg(e) to each e € Ey, laby : Ey — C
is a mapping that labels each hyperedge such that type(labg(e)) = |atty(e)]
(length of sequence), and exty € Vi is a sequence of pairwise distinct external
nodes (in pictures numbers represent a node’s position in ext). We further define
type(H) := |exty|, |H| := |Eg|, and Hy := (Vy, En, atty, labg, €) (the under-
lying type-0 hypergraph of a hypergraph H). We denote the empty hypergraph
as 0. The set of all hypergraphs over ) C C'is denoted by Hs. We occasionally
call hypergraphs just graphs and hyperedges edges.

A hypergraph H is called elementary if it is induced by a single edge e,
ie., By = {e}, Vi = |atty(e)[], and exty = atty(e). In this case, we define
lab(H) := labg(e) and edge(H) := e. Given a set of hypergraphs H, the set of
elementary hypergraphs in H is denoted by elem(H).

Given hypergraphs H, H' € H¢ with Eg N Eg = (0, e € Ey such that
Vg N Vy = [atty(e)] and exty = atty(e), the hypergraph Hle/H'] resulting
from the replacement of e by H' is defined as Hle/H'] :== (Vg UV, (Eg\{e})U
Ey,atty Uatty, laby Ulaby:, exty). Let B C Ey be a set of hyperedges to be
replaced and let repl : B — H¢e be a mapping such that He/repl(e)] is defined
for all e € B. We denote the replacement of all edges contained in B by H[repl]
(the order of their replacement does not matter [I]).

Let H,H' € Hc. Then H is a sub-hypergraph of H', denoted H C H’, if
Vau C Vg, Eg C En, attg(e) = atty(e), and labg(e) = labg(e) for all
e € Ey. The ext-union of H and H', denoted H Ugy H' where ext € (Vg UV )*,
is defined as (Vg U Vs, Eg U Eg/, atty U atty,, laby U labg, ext) provided
Eyg N Eg = 0. Two hypergraphs H and H’ are isomorphic, denoted H = H', if

1 [a1...an] :={a1,...,an}.
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Fig. 4. A possible derivation wrt Gnsp

there are bijections ¢y : Vg — Vg and ¢p : Fg — Eps such that for alle € Ey
labg (¢r(e)) = labg (e), attr (0 (e)) = ¢ (attu(e)) and extpy = ¢>*{/(extH)E

A production A — R over N C C consists of a label A € N and a hypergraph
R € H¢ such that type(A) = type(R). Let P be a set of productions, H € H¢,
e € Ey, (labg(e) — R) € P, R’ € H¢ such that R’ = R and H[e/R'] is defined.
Then H directly derives H' = Hle/R'], denoted H =—p H'.

A hyperedge replacement grammar is a system G = (N, T, P, S) where N C C
is a set of nonterminals, T C C with TN N = () is a set of terminals, P is a finite
set of productions over N, and S € N is the start symbol. Let L4(G) := {H €
Hr | 3L € elem(Hay) : L == H}. The hypergraph language L(G) generated
by G is defined as L(G) := Ls(G).

As an example consider the grammar of NSD graphs Gnsp = ({NSD, Stmt},
{text, cond, while}, Pxsp, NSD) where the set of productions Pysp is shown in
Fig. Bl A possible derivation is given in Fig. @l Note, that in the following we
omit the “while”-production for the sake of brevity.

2 f*(ar...an) = f(a1)...f(an).
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o 2
CondLeft

Fig. 5. Chomsky normalform of Fig. Bl (without “while”)

In the string setting the CYK-algorithm requires grammars to be in so-called
Chomsky normalform CNF'. This is no restriction, since every context-free gram-
mar (that does not generate the empty string) can be transformed to a grammar
that defines the very same language and is in CNF. A similar notion can be de-
fined for HRGs:

Definition 1 (Chomsky normalform). An HRG is in Chomsky normalform
CNF, iff for every production A — R holds: R does not contain isolated nodes,
and either R € Hp A |R| = 1 (terminal production) or R € Hy A |R| = 2
(expansion production).

Every HRG whose language does not contain hypergraphs with isolated nodes
or the empty graph (¢ can be transformed to an equivalent grammar in CNF.
A constructive proof of this proposition is given in [6]. The productions of an
HRG in CNF equivalent to Gnsp (without “while”) are shown in Fig. 513} Note,
that isolated nodes do not occur in the context of visual language specifications.
However, if they cannot be avoided in a particular situation, it might be sufficient
to add unary dummy edges.

Since HRGs are context-free (cf. context-freeness lemma in [I]) the notion of a
derivation treeis meaningful. Let G = (N, T, P, S) bean HRG. Theset of derivation

3 Basically, productions with more than two hyperedges at their right-hand side are
split successively (therefore, in our example the new nonterminal “CondLeft” and the
corresponding production are added). Where necessary, special nonterminal labels ]
are introduced that only derive an elementary graph labeled [, see, e.g., “Cond”. And
finally, so-called chain productions like the derivation of a single “Stmt” nonterminal
from “NSD” are eliminated by adding the productions over “Stmt” also to “NSD”.
This transformation is very similar to the corresponding transformation in the string
setting and can be performed automatically (as realized in DIAGEN).
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Fig. 6. A hypergraph and its derivation tree wrt Gnsp

trees TREE(G) is recursively defined: Consider a triple ¢ = (L, R, branch) where
L € elem(Hn), R € Ho, L =>p R, branch : Ef — TREE(G ). Let root(t) := L.
The triple ¢ is in TREE(G) iff labg(e) = lab(root(branch(e))) for alle € EY and
result(t) := R[{e — result(branch(e)) | e € EX }] (the graph spanned by this tree)
is defined. Note, that according to this definition the leaves of a derivation tree are
triples where R € Hr.

An example graph and its derivation tree are shown in Fig. [fl The arrows
represent the mapping determined by branch. The elementary root graphs L
can be represented by their labels lab(L), since the nodes visited by edge(L) are
just the external nodes of R. Numbers of external nodes are omitted. All nodes
are marked with letters to make them distinguishable. The notions derivation
and derivation tree are indeed equivalent as, e.g., proven in [I].

Next, we introduce the concept of a complement hypergraph. Informally, this
is a graph such that its union with the given input graph can be derived from a
particular start graph.

Definition 2 (complement hypergraph). Given an HRG G = (N, T, P, S),
type-0 hypergraphs H, H. € Hr, and L € elem(Hy). H. is a complement hyper-
graph of H with respect to G and L iff Ey, N Eg =0 and L =% H Uey, H,.

Note, that we do not assume anything about the correctness of the given graph
H wrt G. If H is incorrect, H. is a completion. Otherwise, it is a correctness-
preserving extension of H, just as needed, among other things, for the realization
of situation-dependent structured editing operations in diagram editors.

This notion is illustrated by example in Fig. [l Given the type-0 hypergraph
H surrounded by the box. In the figure several complement hypergraphs of H are
shown (in union with H) — each with respect to the elementary graph labeled

*EY :={e € Er|labr(e) € N}.
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Fig. 7. Some complement graphs of the given graph H

NSD whose external nodes are just the ones marked in the particular image.
Note, that our definition does not relate Vg and Vg, . Indeed those sets may
either overlap or be disjoint. Nodes of the complement graphs that do not already
belong to the original hypergraph H are surrounded by an extra circle in the
figure. In general, the number and size of complement graphs is not restricted,
although a practical implementation surely has to impose meaningful bounds.

3 A CYK-Style Complementing Parser

Given a type-0 hypergraph H, a conventional parser analyzes H with respect
to an HRG G. If possible, a sequence of external nodes is established such that
the resulting graph is in £(G). The corresponding derivation tree can be con-
structed, e.g., by using dynamic programming similar to the CYK algorithm. So
the hypergraph parser of the DIAGEN system computes n = |H| layers. In layer
k, 1 < k < mn, all derivation trees are contained whose result is a graph H' C H
such that |H'| = k. Since HRGs are transformed to CNF in advance, for k > 1
layer k can be computed by combining two derivation trees from layers ¢ and j
at a time where i + j = k. Thereby, expansion productions are applied reversely.

The complementing parser proposed in this section does not only check if H
is a member of the language. It also computes complement hypergraphs up to a
particular size max. If the parameter max is set to zero it simply is a conventional
parser. Our key idea is to introduce fresh edges that can be embedded into the
input graph in a flexible manner. If these edges are actually used in a particular
derivation tree they constitute the complement graph. For every terminal symbol
t of the language, max fresh edges with label ¢ are introduced. Each of these
edges visits type(t) nodes, which are also fresh and special in the sense, that —
in the process of parsing — they might be identified with nodes from H or even
with other fresh nodes (similar to logic variables).
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Fig. 8. Example input/output of the algorithm

Before we define the algorithm more formally we provide an example run with
max = 1 to clarify its basic principle. Fig. [§ shows a possible input hypergraph
and, resulting from the algorithm, its union with the only complement graph
wrt NSD of size up to 1. The corresponding external nodes are also marked.

Fig. @ illustrates how the layers are filled according to this example. The
number enclosed by a circle in the upper right of a derivation tree indicates,
how many of the fresh edges have already been used in this derivation. The
capital letters A, B, C and D are just shorthands for the particular trees to
avoid cluttering the figure by too many arrows. We further simplify the figure
by joining derivation trees that only differ in the labels of their root graphs.
Those mainly appear due to the elimination of chain productions. In this case,
trees are marked with all possible root labels, here NSD and Stmt.

Furthermore, all “imaginable” derivation trees in layer 2 are shown, although
most of them are invalid for some reason and, thus, disregarded by the parser.
Such invalid trees are shaded in the figure and the particular problem is marked
with a lightning symbol. When constructing derivation trees, we have to ensure
that at most max of the fresh edges are used at a time. The derivation tree in
the lower right of layer two, for instance, consumes two fresh edges, which is
prevented by the restriction max=1. The others violate the so-called gluing con-
dition. Here, a node is reduced, i.e., it is non-external within the right-hand side
of an “instantiated” production, although there still is an edge in the remaining
graph visiting this node. It is important to filter invalid derivation trees as soon
as possible to reduce the number of combinations in the layers above.

We compute an equivalence relation ~ between nodes to realize the gluing of
fresh nodes with nodes actually occurring in the input graph. The “significant”
subset of this relation is shown in the figure. A simple mapping indeed is not
sufficient, since an arbitrary number of fresh nodes may coincide.

Complete derivation trees are those consuming the whole input graph. They
are surrounded by thicker lines in the figure and can, of course, only occur in
the layers between |H| and |H| + max. In the example, there is only one tree
with complete coverage of the input graph whose root is labeled with the start
symbol NSD at the same time: the one whose result is shown in Fig.

Next, we define the parsing algorithm more formally. Let G = (N, T, P, S)
be a HRG in CNF, H € Hr a type-0 hypergraph, and max € IN. The parser
successively constructs layers L; C Hp x Hy x 2V*Y x TREE(G) for 1 < i <
|H| + max. We first provide a lemma which states the properties holding for
the elements of the computed layers. This simplifies the understanding of the
algorithm defined afterwards.
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Fig. 9. Illustration of the CYK-style graph parser with completion

Lemma 1. The following properties hold for the elements (H', H.,~,t) € L; if
we identify nodes equivalent wrt equi(~)3:

1
2
3.
4
5

. |H'| +|H.| =1,

result(t) = H' Ugyt H

result(t) cs

. |H.| < max,
. H. is a complement hypergraph of H' with respect to G and root(t).

A proof sketch of this lemma is given in Appendix[Al After processing the layers
we are mainly interested in entries (H', H.,~,t) where lab(root(t)) = S and
|H'| = |H|, i.e., the whole input graph is covered. To simplify the definitions of
the layers let us define an auxiliary predicate for ensuring the gluing condition:

For a graph R, gcy(R) < Ve € Eg\ER : [atty(e)] N Vg C [extr]

® equi(~) := (~ U ~T)* denotes the smallest equivalence relation containing ~. For-
mally, the identification of equivalent nodes means to deal with the corresponding
quotient graph (whose nodes actually are equivalence classes of nodes), but to avoid
cluttering we just assume the identification of equivalent nodes implicitly.
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Thus, gcy (R) holds if and only if no edge of H that is not already in R vis-
its a non-external node of R. Next, we define the layers recursively. Layer 1
only contains derivation trees resulting from the reverse-application of terminal
productions. Thereby, either a single, terminal edge of H is derived, or one of
max-|T| fresh edges. This possibly large number of fresh edges is necessary, since
edges should keep their label and at this early stage we cannot know how many
edges with a particular label we will eventually need:

Ll = {(R07®G7®7(L7R7®)) |
RC H,|R|=1,L € elem(Hy), L =>p R,gcy(R)}
U {(c. Ro.0,(L,R.0)) | t € T,k € {1, ..., max},

er, fresh edge, nsy sequence of type(t) fresh nodes,
L € elem(Hn), R = ([nsk), {ex}, {ex — nsp}, {ex — t},exty), L =p R}

As illustrated in Fig. [@ from layer 2 on the derivation trees are composed by
combining two compatible derivation trees ¢; and t, of lower layers at a time
by reverse-applying expansion productions. Thus, layer L;,7 > 1 is constructed
from already computed layers L; and L;_; where j < i. For 1 < i < |H|+ max

we define:
Li/2]
L= |J (Lo Li)

Jj=1

Thereby, the combination of two sets M, N C Hr x Hr x 2¥*Y x TREE(G) is
defined as follows:

M ® N := {(H{ Uc Hy, Hi_ Uc Ha_, ~n, (L, R, {€e1 — t1,e2 — t2})) |
(HI, Hy, ~1,t1) € M, (H), Ho,,~o,t3) € N,
By, N Egy =0,En, 0 By, =0,[H1.| + [Hz,| < max,
let Ly, := root(ty), ey, := edge(Ly) for k € {1,2},
3 ~,, minimal relation in 2V*Y such that
~1Crp, ~2Crvy, ~i= equi(~y,), preservesy, (~),
when identifying nodes equivalent wrt to ~
3L € elem(Hn ), R := Ly Uext, L2, L =p R, gcy(R)}

When combining derivation trees the fresh nodes can be glued to other nodes.
For this purpose an equivalence relation between nodes is established such that
the union of the roots of ¢; and ts is isomorphic to the right-hand side of the
particular production. It must not happen, however, that nodes of the input
graph Vg are identified among each other. Rather their identities have to be
preserved. This restriction is ensured by using the predicate preservesy (~) :<
VYni,ne € Vi ng ~ ng = ny = ny. Thus, the relation {(n1,ns) €~ | ny,ny € Vi }
has to be the identity. Since the layers are recursively defined Lemma [[ now can
be proven by induction as sketched in Appendix [Al
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Discussion

This algorithm also ensures that indeed all structurally different complement
graphs up to size max are computed, because all possible embeddings of up to
max arbitrarily labeled, fresh edges into H are constructed. At the end, those
equivalence classes of nodes not containing a node of the input graph can be
considered as new nodes contributed by a complement graph.

Performance. Although the algorithm is correct and complete, it suffers from
an inherent problem. If the bound max is increased, we get a lot of redundant
derivation trees, since new derivation trees in layer 1 (where fresh edges have the
same label) can be embedded at different places interchangeably. Unsurprisingly,
this effect has a negative impact on the performance of the algorithm.

It is possible to avoid this problem though. In our current implementation,
layer 1 only contains derivation trees for edges originally occurring in the input
graph. In addition, for each terminal production a special leaf derivation tree
is constructed that can be cloned if required. This approach is more syntax-
driven and, thus, yields only structurally different solutions. Therefore, it can
even be used as a reasonably efficient language generator. However, the formu-
lation given in this paper is less technical. It has been preferred for the sake of
presentation.

Indeed our current implementation has turned out to be sufficiently efficient
even for interactive applications. In Fig. we provide performance data for
different values of max. The input graphs have been simple sequences of state-
ments, i.e., |[H| is the length of the sequence. Thus, the corresponding comple-
tions are extensions of correct graphs (incorrect graphs show a similar behavior,
but are more difficult to construct in a homogeneous way). The algorithm shows
a polynomial runtime behavior. Note, that our implementation has not been op-
timized with respect to performance yet. Further enhancements can be achieved
by a prior analysis of the grammar such that compatible derivation trees can be
found more efficiently. We also work on an incremental version of the algorithm
where additional fresh edges can be efficiently incorporated on demand.

execution time in sec
5
T
*
L

Fig. 10. Execution time of our implementation applied to NSD graphs with different
values of max on standard hardware
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There is one factor particularly known for its strong impact on the perfor-
mance: the degree of connectedness. We already know that parsing performance
suffers if graphs of a language are highly disconnected, cf. [1I2]. This effect un-
fortunately becomes worse with our approach, since the gluing condition cannot
be used as effectively anymore to exclude derivation trees at an early stage.

Gluing Nodes. Per definition the algorithm presented in this section preserves
the nodes of the input graph. However, we have noted that it is sometimes
convenient to relax this condition. In-

correct input graphs often can already = o
be corrected by gluing some nodes ap-
propriately. s a0
For instance, reconsider the exam- | o
ple graph given in Fig. [l It can be
corrected by inserting an artificial ex- o Yo
tra edge. However, there also is a more
lightweight way: The two isolated Fig. 11. Gluing original nodes

edges can be joined together by glu-

ing some nodes. There are two ways to do this both shown in Fig. Il Support
for this kind of repair action can be achieved with a very little adaptation of
the given algorithm. However, formally this approach would have to rely on a
broader notion of completion.

4 Related Work

To the best of our knowledge graph completion wrt hyperedge replacement gram-
mars has not been considered yet. Due to their logic-based approach graph parser
combinators [5] provide some support for completion as a nice side effect. How-
ever, from a performance point of view this framework cannot be used for prac-
tical, interactive applications. In contrast, the algorithm presented in this paper
does not suffer from this problem.

In the more general context of graphs, several approaches exist to error
correction and inexact matching, respectively. Most practical approaches pro-
pose either particular restrictions on the graph grammar formalism, incorporate
application-specific knowledge or even make use of heuristics [7] in order to solve
the particular problem with an acceptable performance.

For instance, Kaul proposed a fast parser for the computation of a minimum
error distance []. It depends on so-called precedence graph grammars and runs in
O(n?). Sdnchez et al. add special error correcting rules to the graph grammar [9],
which they define in terms of region adjacency graphs. Their approach appears
to be beneficial in the domain of texture symbol recognition.

In the context of diagram editors, the grammar-based system VLDESK [10]
provides support for so-called symbol prompting. Here, the parsing table of a
YAcc-based parser is exploited to extract information about possible contexts
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of a particular symbol. Following this approach, local suggestions can be made
that may, however, be misleading from an overall perspective (although local
context in general can provide more suggestions and can be computed more
efficiently). In the tool AToM? [I1] model completion can be realized by solving
a constraint-logic program that can be generated from the metamodel of the
particular language [12].

5 Conclusion and Further Work

We have presented an approach for hypergraph completion with respect to hy-
peredge replacement grammars. The practicability of the proposed algorithm
has been validated by incorporating it in the diagram editor generator DIAGEN.
The algorithm appears to be widely applicable and sufficiently efficient even for
interactive applications. It can be directly used for the realization of content
assist in the domain of diagram editors.

Our algorithm is quite beneficial to correct errors in a graph. However, we do
not require the given graph to be incomplete. Whereas incomplete graphs can
be completed, we can further compute powerful structured editing operations
from the complement graphs of already complete graphs. In both DIAGEN and
also TIGER [13] complex editing commands can be specified by means of graph
transformation rules. While this is a powerful way to specify editing operations,
it is also quite tedious and error-prone. With our approach a set of applica-
ble commands, which automatically preserve or even establish the syntactical
correctness of the resulting graph/diagram, can be computed on the fly.

We already have specified several, prototypical diagram editors with comple-
tion support. Nevertheless, in the future we have to study in depth how hyper-
graph completions can be translated back to diagram completions in a systematic
way. We further have to realize more sophisticated user interaction mechanisms
which provide maximal benefit of the different completions.

Our algorithm can be extended in a variety of ways. A quite severe restriction
is that it can only be applied to context-free languages. Unfortunately, many
graph/diagram languages are not context-free. A restrictive embedding mech-
anism all practical diagram languages can be defined with has been proposed
by the third author to address this issue. The adopted parser (as incorporated
in DIAGEN) is still efficient. In the future we want to investigate how context-
sensitive embedding rules can be supported by our parser to further widen its
range of applicability.
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A Proof Sketch of Lemma [T

Proof. By induction on 4. For ¢ = 1 layer ¢ is defined as the union of two sets. It
can be easily checked that both satisfy the given properties.

Induction step: Let r = (H', H., ~y,t) € L; where t = (L, R, branch). Then

there hastobea j, 1 < j < [i/2], such that r € L;®L;_;. This means, that there
are two tuples (H{,ch, Nl,tl) € Lj, (Hé,H207N27t2) € Li,j with EH{ ﬂEHé =
0, By, N By, = 0,|H1 |+ |Hs, | < max, ~, is a minimal relation such that
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~1C~p, ~2Cry, preservesy, (~) and, when identifying nodes equivalent wrt ~,
L = p R and gcg(R). Thereby, Ly := root(ty), ey := edge(Ly), k € {1,2}, ~:=
equi(~y) and R := Lj Ugy, Lo.

1.

|H'|+|H,| = i: follows by induction hypothesis and the fact that only graphs
with disjoint edge sets are combined.

. H' C H: this statement holds, since, by induction hypothesis, both Hj and

H/, are subgraphs of H.

result(t) = R[{e, — result(branch(ey)) | k € {1,2}}] (def. result)
= R[{ey — result(ty) | k € {1,2}}] (constr. branch)
= R[{ex = Hj Uextyu, ) Hr. | & € {1,2}}] (ind. hypothesis)

Ll[{el = Hi UEth‘ebuu(tl) ch}] Uext,

La[{ez = Hj Uexty s,y Ho. ] (e € Fr,,def. R)
= (H; Uextyuunce, ) 1) Uextr (HY} Uextyuun(ey) H2.) (Ly elementary)
= (Hy Ue H)) Uext,, (Hi, Ue Ha,) (outermost ext)
= H'Uey, He (constr. H', H,.)
= H' Uext, e He (L=p R)

|H.| < max: holds by definition of the layer (|H.| = |H1,| + |Hz2.| < max).
H., is complement hypergraph of H’ with respect to G and root(t): We just
argue here, since otherwise we would need to formally introduce quotient
graphs. The prerequisites for the definition of complement graphs are sat-
isfied. Disjointness of edge sets is maintained while constructing the layers.
So the only statement to prove is root(t) = L =% H' Uex, H. = result(t).
Since by construction ¢ is a proper derivation tree this statement normally
holds. However, we have implicitly dealt with equivalence classes of nodes, so
that two issues have to be clarified. Firstly, with preserve we have prevented
nodes of the input graph H to coincide via ~. Thus, H is isomorphic with
its quotient graph. Second, it must not happen that by joining nodes the
gluing condition ensured at a particular layer can be hurt afterwards. This
cannot happen though, since the gluing condition only prevents non-external
nodes of the right-hand side of an instantiated production to occur in the
remaining graph. In the following, however, only external nodes are joined
due to the minimality of ~,,.
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Abstract. We consider four different models of process interactions that
unify and generalise models introduced and studied by Angluin et al. [2]
and models introduced and studied by Mazurkiewicz [I718]. We encode
these models by labelled (hyper)graphs and relabelling rules on this la-
belled (hyper)graphs called negotiations. Then for these models, we give
complete characterisations of labelled graphs in which the naming prob-
lem can be solved. Our characterizations are expressed in terms of locally
constrained homomorphisms that are generalisations of known graph
homomorphisms.

1 Introduction

Three major process influence (interaction) models in distributed systems have
principally been considered: the message passing model, the shared memory
model, the local computation model. In the three models the processes are rep-
resented by vertices of a graph and the interactions are represented by edges
or hyperedges. In the message passing model processes interact by messages:
they can be sent along edges. In the shared memory model atomic read/write
operations can be performed on registers associated with hyperedges. In the lo-
cal computation model, interactions are defined by labelled graph relabelling
rules; supports of rules (graphs used for the description of labellings) are edges
or stars. These models (and their sub-models) reflect different system architec-
tures, different levels of synchronization and different levels of abstraction. The
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structure of the communication or of the interaction subsystem is represented
as a graph. In general this graph is static: it means that it remains fixed during
the distributed computation. Some works consider dynamic graphs: some links
may fail and recover and some nodes may fail and recover.

In this paper we consider local computations on another kind of dynamic
distributed system: processes are mobile and they interact when they are suffi-
ciently close to each other or when some localisation conditions are verified. In
[2], Angluin et al. consider a distributed system where a set of moving sensors
can interact when they are sufficiently close to each other. They assume that
every pair of sensors repeatedly come sufficiently close to each other for being
able to communicate, i.e., the interaction graph is the complete graph. In their
work, they consider finite-state sensors (each sensor has a constant number of
bits of memory) and they study the computational power of such a system.

In [I7/18] the distributed system is presented in the following way. There
is a number of individuals, each of them brings an integer as a label. They
are grouped into associations: within an association they can communicate, ex-
change information, and modify their labels; there is no possibility of direct
communication between individuals that do not belong to the same association.
However, since some individuals can be affiliated to more than one association,
indirect communication between remote individuals is possible using individuals
with multiple affiliations as go between. Such systems are called communica-
tion structures. Associations act by their assemblies that take place from time
to time; an association is active during its assembly, and passive out of it. The
purpose of an assembly is to exchange information among participants and to
update the states of the participants.

In this work, we consider a system where the processes have an unbounded
number of states and where a computation step can involve an arbitrary number
of processes. Moreover, we do not assume that each process can interact with any
other process: we just assume that the communication structure is connected.
We study the computational power of such systems through the naming problem.

The naming problem. We focus on the naming problem, that is a classical
problem to highlight differences between different models of distributed com-
puting. A distributed algorithm A is a naming algorithm if each execution of
A terminates and leads to a final configuration where all processes have unique
identities. Being able to give dynamically and in a distributed way unique iden-
tities to all processes is very important since many distributed algorithms work
correctly only under the assumption that all processes can be unambiguously
identified. In this paper naming is done using a distributed enumeration algo-
rithm. A distributed enumeration algorithm assigns to each network vertex a
unique integer ; in such a way we obtain a bijection between the set V(G) of
vertices and {1,2,...,|V(G)|}.

The study of the naming problem makes it possible to highlight combinatorial
tools useful for other problems like termination detection or recognition (see

202215/
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Formal Models. A communication structure is defined by a set of individuals
that belong to different associations. Some individuals can be affiliated to more
than one association. A communication structure is represented as an undirected
hypergraph: vertices represent individuals and hyperedges define associations. In
the particular case where all associations have exactly two members, a commu-
nication structure can be seen as a simple graph. Labels (states) are attached to
individuals and associations thus we consider labelled (hyper)graphs which are
defined by a labelling function A which associates to a vertex or an (hyper)edge
a label. In the more general model of computation called labelled negotiations,
a computation step enables to modify the states of the vertices of a hyperedge
and the label of the hyperedge itself according only to their previous states.
In other words, in one computation step, the members of an association syn-
chronize, exchange their labels and modify them. We consider communication
structures where hyperedges cannot be labelled and then vertices cannot always
distinguish the different hyperedges they belong to. This restriction leads us to
study unlabelled negotiations We also consider models of computations where
in one computation step, one vertex observes the states of the vertices of a hy-
peredge it belongs to and the state of the hyperedge (if available) and modifies
only its state and the state of the hyperedge (if this one is available). Such a
model of computation will be called cellular. Thus, we study cellular (un)labelled
negotiations.

Our results. We characterize labelled (hyper)graphs where the naming problem
can be solved in the four different models we consider. We first show that cellular
labelled negotiations have the same computational power as labelled negotiations
(Proposition [[l). To give our characterization, we generalize locally constrained
graph homomorphisms to hypergraphs (Section[2). This enables us to formulate
conveniently necessary conditions (Lemmall) inspired by Angluin’s lifting lemma
[1]. It turns out that the necessary conditions are also sufficient. Then we present
algorithms that solve the naming problem (Theorems [ 2 and B]) (Theorem 1 is
another formulation of a result presented in [17]).

Related Work. In [243] Angluin et al. study the power of models of computa-
tion by pairwise interactions of identical finite-state agents. The general question
is of characterising what computations are possible. They prove in particular that
all predicates stably computable are semilinear, in the model in which finite state
agents compute a predicate of their inputs via two-way interactions in the all-
pairs family of communication networks [3]. This kind of computations may be
encoded by local computations on edges of labelled graphs. The case of one-way
communication between two agents corresponds to cellular local computations
on edges, thus of the form:

X Y X/ Y

(] o —_— o o
where X, Y and X' are labels (states) attached to vertices, X’ = f(X,Y) and
f is a transition function. In [I1]], a complete characterization of labelled graphs
for which enumeration and election are possible is presented.
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The case of two-way communication corresponds to local computations on
edges of labelled graphs, thus of the form:

X Y X’ Y’
o o

where X,Y, X’ and Y’ are labels (states) attached to vertices, X’ = f1(X,Y),
Y’ = fo(Y, X) and fi1, f2 are transition functions. Graphs for which the naming
problem is solvable are characterized in [8].

All-pairs family of communication network is captured by our model by consid-
ering the case where each association has no name and has exactly two members,
and the set of associations defines the complete graph. The two-way interaction
model of [3] corresponds to our general model of computation. The one-way pop-
ulation protocol defined in [4] corresponds to the cellular computation model. In
[T7UT8] associations are labelled and cellular relabellings are not considered.

Overview. The structure of this paper is as follows. Section 2 reviews basic
definitions of communication structures and negotiations. In Section 3 first we
prove that labelled negotiations can be simulated by cellular labelled negotia-
tions, then we present characterisations of communication structures which ad-
mit a naming algorithm using (cellular) labelled negotiations. Section 4 presents
characterisations of communication structures which admit a naming algorithm
using (cellular) unlabelled negotiations. Section 5 presents final remarks.

2 Preliminaries

2.1 Communication Structures and Labelled Graphs

A communication structure C is defined by a set B(C) of individuals and a
set A(C) of associations: each association is a set of individuals. Each individual
b € B(C) belongs to one or more associations a € A(C') and it will be denoted by
b € a; one will say that b is a member of a and that a contains b. Each association
may contain an arbitrary number of elements and two distinct associations can
have the same members. A communication structure is connected if for any
associations a,a’ € A(C), there exists a sequence ag, a1, ..., a, such that ag = a,
an, = a' and for any i € [1, n], there exists an individual that belongs to a;—1 and
a;. In the following, we will only consider connected communication structures.

A communication structure C' is bilateral if each association contains exactly
two elements. In this case C' can be represented by a graph where vertices are
individual and edges are associations.

A communication structure C' may be viewed as a hypergraph where vertices
denote individuals and hyperedge denote associations. It will be represented by
a simple bipartite graph G¢ that is a classical representation of hypergraphs.
The set of vertices V(G¢) contains two disjoint subsets Va(G¢) and Vp(Ge).
Each association a (resp. individual b) of C' corresponds to a vertex v, € Va(Gc)
(resp. vp € VB(Ge)). If an individual b belongs to an association a, then there
is an edge {vq,w} in E(Gc¢). Given a vertex v € Va(Ge) U Ve(Ge), Nae (v)
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denotes the set of neighbours of v € G¢, i.e., the set {v' | {v,v'} € E(Ge)}. A
graph homomorphism ¢ from G to G’ is a mapping from V(G) to V(G') such
that if {v,w} € E(G), then {¢(v), p(w)} € E(G).

We want to extend to communication structures the definitions of coverings,
pseudo-coverings and submersions that are used in [RIOTO/T4] for graphs, that
are bilateral communication structures studied in [I7]. We give a definition of ho-
momorphism between communication structures: it is a generalization of graph
homomorphisms.

Definition 1. Given two communications structures C and C', a mapping ¢
from B(C) to B(C") and from A(C) to A(C") is a homomorphism from C to
C" if it induces a graph homomorphism of Go to Ger such that for each ver-
tex vq € Va(Ge), the following holds: (1) |[Ng.(va)| = [Na, (¢(va))|, and (2)
¢(Naio (va)) = Nag, (9(va)).

Throughout the paper we will consider communication structures where individ-
uals and associations are labelled with labels from a recursive label set L that
admits a total order <. A labelled communication structure will be denoted by
C = (C,\) where C is the underlying unlabelled communication structure and
where A : B(C)UA(C) — L is a labelling function. A mapping ¢ from C = (C, \)
to C’' = (C’,N) is a homomorphism if ¢ is a homomorphism from C to C’ that
preserves the labelling, i.e., for each € B(C) U A(C), A(x) = N (p(x)).

For any set S, |S| denotes the cardinality of S while Py, (5) is the set of finite
subsets of S.

2.2 Locally Constrained Homomorphisms

We now define submersions, coverings and pseudo-coverings of communication
structures that are just generalizations of existing definitions for graphs. A com-
munication structure C is a submersion of C’ if there exists a locally surjective
homomorphism from C to C'.

Definition 2. Given two communication structures C=(C,\) and C'=(C", ),
C is a submersion of C’ via a homomorphism ¢ if for each vertex v, € Vp(G¢),
©(Nge (b)) = Ng,(¢(b)). In this case, we say that ¢ is a locally surjective
homomorphism from C to C'.

In other words, a homomorphism ¢ from C to C’ is locally surjective if for
each individual b € B(C), the associations that contain ¢(b) are the images
of the associations that contain b. A communication structure C will be called
submersion-minimal if for any C’ with |B(C")| < |B(C)|, C is not a submersion.

A communication structure C is a covering of C’ if there exists a locally
bijective homomorphism from C to C'.

Definition 3. Given two communication structures C and C’, C is a covering
of C" via a homomorphism ¢ if for each vertex vy, € Vg(Gc), |Na ()| =
ING_, (¢(vp))| and ¢(Ng.(vs)) = Na,, (¢(vs)). In this case, we say that ¢ is a
locally bijective homomorphism from C to C”.
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In other words, a homomorphism ¢ from C to C’ is locally bijective if for each
individual b € B(C) ¢ induces a bijection between the associations that contain
b and the associations that contain ¢(b). A communication structure C will be
called covering-minimal if C is not a covering of any C’ such that |B(C")| <
IB(C)].

We now define pseudo-coverings that generalize pseudo-coverings of graphs
introduced in [§].

Definition 4. Given two communication structures C=(C,\) and C'=(C", \),
C is a pseudo-covering of C’' via a homomorphism ¢ if there exists a subset
Ao of A(C) such that the communication structure Co = (Co, Ao) defined by
B(Cy) = B(C), A(Cy) = Ag and for each x € B(Cp) U A(Cp), Ao(z) = A(x) is a
covering of C' wia the restriction of ¢ to Cy.

A communication structure C will be called pseudo-covering-minimal if C is not
a pseudo-covering of any C’ such that |B(C")| < |B(C)].

Obviously, if a communication structure C is a covering of C’, then C is a
pseudo-covering of C’ and if C is a pseudo-covering of C’, then C is a submersion
of C'.

2.3 Negotiations and Relabelling Rules

In our models, in one computation step the states of an association and its
members are modified according only to their previous states. An algorithm can
then be described by a set R of relabelling rules r = (A, A}.) where A, and A,
are two labellings of an association. A computation step is then an application of
a rule to some association of the communication structure. We will note CRC’
if C’ can be obtained from C by applying a rule of R to some association of
C. Obviously, C and C’ have the same underlying communication structure C,
only the labelling of the active association is modified. Thus, slightly abusing
the notation, R will stand both for a set of rules and the induced relabelling
relation over labelled communication structure. The transitive closure of such
a relabelling relation is noted R*. Computations using uniquely this type of
relabelling rules are called in our paper negotiations.

The relation R is called noetherian on a communication structure C if there
is no infinite relabelling sequence CoRC1R ... with Cy = C. The relation R is
noetherian if it is noetherian on each communication structure. Clearly, noethe-
rian relations code always terminating algorithms.

An algorithm encoded with such computation rules is a distributed algorithm
in the sense that two computation steps can be applied simultaneously to two
distinct associations, provided that no individual belongs to both of associations.

In the following, we will consider four different models of negotiations. The
most general model described above is called labelled negotiations. We will also
deal with communication structures where the associations cannot be labelled,
this model will be called unlabelled negotiations. We will also consider models
where in one computation step, the label of at most one member can be modified,
i.e., in one computation step, one member modifies its label and the label of an
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association it belongs to (if associations can be labelled) according to the labels
of all the members of this association and to the label of the association (if
the associations can be labelled). When the associations can be labelled, the
model corresponding to this kind of computation steps will be called cellular
labelled megotiations and when the associations cannot be labelled, it will be
called cellular unlabelled negotiations.

Given a terminating algorithm A using labels in a set L, one will say that
an algorithm A’ using labels in a set L’ simulates A if there exists a mapping
7w : L' — L such that for any communication structure C, each execution of A’
on C terminates and for each execution of A’ on C with a final labelling X,
there exists an execution of A on C with a final labelling A on C, such that for
each x € B(C) U A(C), w(N(x)) = A(z). It is obvious that any algorithm using
cellular labelled negotiations is an algorithm that uses labelled negotiations; in
fact, cellular labelled negotiations have the same computational power as labelled
negotiations:

Proposition 1. Any algorithm A using labelled negotiations can be simulated
by an algorithm A’ that uses cellular labelled negotiations.

In the following, we say that an algorithm A has the termination detection
property if for any execution of A4 on C , there exists an individual b € B(C)
that can detect locally (according only to its state) that the computation is over,
i.e., that each individual has computed its final value.

An algorithm will be described by a recursive set of rules of the form (A, A.).

We can see each rule r as a couple of two multisets:

({{AT,Ua )‘T-,la IR AT,k}}v {{)‘;ﬂ,ov Xr,lv R )‘/rk}})
We can apply r to an association a if a has k members, if the label of a (if
available) is A, and if the multisets of labels {{\(b) | b € a}} is equal to
A1, -+ Ar i} ) In this case, the label of a becomes A]. ; and the label of each
member of a labelled by A.; becomes )\’” In the case of cellular negotiations,
for each ¢ > 1, we should have A, = \,.;.

When we want to describe a set of rules that do not depend on the size of the
association a, we will write the precondition as a logical formula that the labels
of a and its members must satisfy to apply the rule. Then we describe the new
labels of @ and of each member of a. This description enables to encode an infinite
number of relabelling rules (one for each size of association) in a finite way.

2.4 Impossibility Result

The following lemma exhibits a strong link between homomorphisms and nego-
tiations. This is a counterpart of the lifting lemma of Angluin [I] adapted to
communication structure homomorphisms.

Lemma 1 (Lifting Lemma). Let R be a relabelling relation corresponding to
an algorithm using labelled negotiations (resp. unlabelled negotiations, cellular
unlabelled negotiations) and let Cq1 be a covering (resp. pseudo-covering, sub-
mersion) of Cq. If CoR*CY, then there exists Cy such that C;R*CY and C/ is
a covering (resp. pseudo-covering, submersion) of Cf,.
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Consequently, there cannot exist a naming algorithm A using labelled negotiations
(resp. unlabelled negotiations, cellular unlabelled negotiations) on a communica-
tion structure C; that is not covering-minimal (resp. pseudo-covering-minimal,
submersion-minimal). Indeed, if C; is a covering (resp. pseudo-covering, submer-
sion) of Cg with |B(C2)| < |B(C1)|, consider a terminating execution p of A on
C,, that leads to a final configuration C). From Lemmall] one can construct a ter-
minating execution on C; from p that leads to a final configuration C/ that is a
covering (resp. pseudo-covering, submersion) of C}. Consequently, there exists an
individual in C{ whose label appears at least twice in C/: individuals do not have
unique identities in C/.

3 (Cellular) Labelled Negotiations

In this section, we give a characterization of communication structures where we
can solve the naming problem using cellular labelled negotiations or labelled ne-
gotiations. We give a naming algorithm using labelled negotiations that solves the
enumeration problem on any communication structure C that is covering-minimal.

Each individual b (resp. association a) attempts to get a number between 1
and |B(C)| (resp. |A(C)|). Each individual (resp. association) chooses a number
and collects the numbers of the associations it belongs to (resp. the numbers of its
members) to construct its local view. Then, each individual and each association
broadcasts its number with its label and its local view. If some individual b (resp.
an association a) detects that there exists another individual " (resp. another
association a’) with the same number, then it compares its label and its local
view with the label and the local view of its opponent. If the label or the local
view of b is “weaker”, then b chooses a new number and broadcasts it again.
At the end of the computation, each individual and each association will have a
unique number if the communication structure is covering-minimal.

Labels. Consider a communication structure C = (C, \) with an initial labelling
A: B(C) U A(C) — L. During the computation each individual b € B(C) will
acquire new labels of the form (A(b), n(b), N(b), M (b), S(b)) and each association
a € A(C) will get labels of the form (A(a), m(a), P(a)) where:

— the first component A(b) (resp. A(a)) is just the initial label (and thus remains
fixed during the computation),

— n(b) € N (resp. m(a) € N) is the current identity number of b (resp. a)
computed by the algorithm,

— N(b) € Pan(N) (resp. P(a) € Pan(N)) is the local view of b (resp. a). Intu-
itively, the algorithm will try to update the current view in such a way that
N(b) (resp. P(a)) will consist of the current identities of the associations
that contains b (resp. of the members of a). Therefore N (b) (resp. P(a)) will
be always a finite (possibly empty) set of integers,

— M(b) € Nx L x Pgn(N) is the current individual-mailbox of b. It contains the
whole information about individuals received by b during the computation.
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— S(b) € Nx L x Pgn(N) is the current association-mailboz of b. It contains the
whole information about associations received by b during the computation.

The fundamental property of the algorithm is based on a total order on the set
Prn(N) of local views, as defined by Mazurkiewicz [16]. Consider two sets Ny, No
of integers. Suppose that Ny # Ns. Then N; <; Ny if the maximal element of
the symmetric difference Ny A No = (N7 \ N2) U (N2 \ N1) belongs to Na. Note
that in particular the empty set is minimal for <. If N(b) <3 N(b') then we say
that the local view N (b') of & is stronger than the one of b (and N (b) is weaker
than N(b')). We extend <1 to a total order on L x Psn(N): (¢, N) <1 (¢/,N') if
either £ < ¢ or ({ =¢ and N <; N'). We will also use the reflexive closure <
of <.

Labelled Negotiations Rules. We describe here the relabelling rules that
define the enumeration algorithm. First of all, to launch the algorithm there is a
special initial rule Ry that just extends the initial label A(b) (resp. A(a)) of each
individual b (resp. association a) to (A(b),0,0,0,0) (resp. (A(a),0,0)). The label
of an association a (resp. a member b of a) obtained by the application of a rule
to a is denoted (A(a), m'(a), P'(a)) (resp. (A(b),n’(b), N'(b), M'(b),S'(D))).

The first rule R enables to update the mailboxes of all the individuals that
belongs to a same association.

R12

if 3b,b" € a, M(b) # M(b') or S(b) # S(b’) then

Vb€ a,M'(b) := | J M(b) and S'(b) := [ S(b
bea bea

The second rule Ry does not involve any synchronisation. It enables an in-
dividual b to change its identity if its current identity number n(b) is 0 or if it
knows that there exists another individual with the same number and a stronger
label or a stronger local view.

RQ'

if n(b) =0 or I(n(b), L, N) € M(b) such that (A\(b), N(b)) <1 (¢, N) then
w(b) o= 1+ max{n’ | (W, £, N') € M(b)};
M (b) := M(b) U {(n(b), A(b), N(b))};

The rules R3, R4, R5 are designed such that one can apply one of these rules
to some association a only if one cannot apply the preceding ones to a. The
third rule enables an individual by to modify its identity if it belongs to some
association a such that there exists another individual by € a with the same
number, the same label and the same local view.

Rg:

if Vb, b € a, M(b) = M(b') and S(b) = S(V') and Vb € a,n(b) # 0 andV(n(b),£, N) €

M(b), (£, N) =1 (A(D), N(b)) and 3bo, b1 € a such that n(bo) = n(b1) then

n'(bo) :== 1+ max{n’ | (n', €', N") € M(bo)};
M (bo) == M (bo) U{(n/(bo), A(bo), N (bo))};
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The fourth rule is the counterpart for associations of the second rule. It enables
to modify the identity of an association a if the current identity number m(a)
is 0 or if there exists another association with the same number and a stronger
label or a stronger local view. When this rule is applied to a, the local view of
the members of a is updated.
R42
if Vb, € a, M(b) = M(V), S(b) = S(b') and n(b) #
Vb € a,n(b) #0 and V(n(b),f, N) € M(b), (¢, N)
and m(a) =0 or 3I(m(a),?, P) € S(b) such that (
m'(a) := 1+ max{m' | (mlvélvpl) M(b)};
P'(a) :={n(b) | b € a};
Vb € a,N'(b) := N(b) \ {m(a)} U {m’(a) };
Vb € a, M'(b) := M(b) U {(n(b'), A\(t)), N'(b)) | V' € a};
Vb € a,S'(b) := S(b) U{(m/(a), A(a), P'(a))}};

The last rule enables to update the local view of an association.
R52
if Vb, b € a, M(b) = M(V), S(b) = S(¥') and n(b) # n(b')
and Vb € a,n(b) # 0 and ¥Y(n(b),£,N) € M(b), (¢, N) <1 (A(b), N(b))
and p(a) # 0 and ¥(m(a),l, P) € S(b), (¢, P) =1 (A(a), P(a))
and 3bg € a such that n(bo) ¢ P(a) then

P'(a) == {n(b) | b € a};

Vb € a,S'(b) := S(b) U{(m(a), A(a), P(a))}};

Any execution of the algorithm satisfies monotonicity properties. Any run p
of the algorithm on a labelled communication structure C = (C, \) terminates
and yields a final labelling (X, n,, N,, M,, S,) of individuals and a final labelling
(A, m,, P,) of associations.

The mapping defined by n, and m, is a locally bijective homomorphism from
C to C;,. Consequently, if C is covering-minimal, it implies that in the final con-
figuration, {n,(b) | b € B(C)} = [1,|B(C)|]. From Lemma [[] and Proposition [I]
we get the following theorem.

n(b'),
(A(b), N (b))

=1 )
A(a), P(a)) <1 (¢, P) then

Theorem 1. For every communication structure C, there exists a naming algo-
rithm for C wusing (cellular) labelled mnegotiations if and only if C s
covering-minimal.

Suppose that all the individuals initially know | B(C')|, then the termination detec-
tion of the algorithm is possible on a covering-minimal communication structure
C. Indeed, once an individual gets the identity number |B(C)|, it knows that all
the individuals have different identity numbers that will not change any more.

4 (Cellular) Unlabelled Negotiations

We now consider unlabelled negotiations and cellular unlabelled negotiations.
We give characterizations of communication structures where we can solve the
naming problem using these two kinds of negotiations. A corollary of these char-
acterizations is that unlabelled negotiations have a strictly greater computational
power than cellular unlabelled negotiations.
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4.1 Cellular Unlabelled Negotiations

The algorithm uses the same ideas as the algorithm of the previous section. The
main difficulty is to achieve to update correctly the local view of the individuals.

Consider a communication structure C = (C,\) with an initial labelling
A: B(C) — L. During the computation each individual b € B(C') will acquire
new labels of the form (A(b),n(b), N(b), M (b)) where:

— n(b) € N is the identity number of b.

— N(b) € Psin(Psn(N)) is the local view of b. Intuitively, the algorithm will try
to update the local view of b such that N(b) contains a set {n(d’) | V' € a}
for each association a that contains b.

— M (b) is the mailbox of b and it contains the whole information the individual
b has about the network.

We also need to define a total order on local views. We will just generalize the
order defined above. Consider two sets Ny, No whose elements are some sets of
integers ordered by <;. Suppose that N # Ny. Then N; <5 N» if the maximal
element for <; of the symmetric difference Ny ANs = (N1\N2)U(N2\Np) belongs
to No. Again, we extend <2 to a total order on L X Pgy(Pan(N)): (£, N) <2
(¢, N") if either £ <z, ¢’ or ({ ={¢" and N <o N').

Cellular Unlabelled Negotiations Rules. The label of an individual by after
the application of a relabelling rule to an association a that modifies the state
of by is denoted by (A(bg),n (bo), N'(bg), M'(bg)). The three first rules have the
same meaning as the three first rules of the algorithm described in the previous
section.

R12
if 3b € a, M(b) \ M(bo) # 0 then
bo) := | J M(b)
bca
RQI

if n(bo) =0 or I(n(bo), ¢, N) € M(bo) such that (A(bo), N(bo)) <2 (£, N) then
n'(bo) :== 1+ max{n’ | (n', €, N") € M(bo)};
M (bo) == M (bo) U {(n"(bo), A(bo), N (bo))};

Rg:
if Vb, € a, M(b) = M(V),
Vb € a,n(b) # 0 and ¥(n(b), £, N) € M(b), (¢, N) =2 (A(b), N(b))
and 3b € a,b # by such that n(bo) = n(b) then
n/(bo) := 1+ max{n' | (n',¢',N') € M(bo)};
M’(bO) = M(b0) U{(n'(bo), Albo), N (bo))

The fourth rule enables an individual b to add the set S" = {n(b') | ¥’ € a} of
the current identity numbers of the members of an association a it belongs to.
In this case, all the sets S belonging to N(b) such that S <; S’ are removed.
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The intuitive justification for the deletion of all such S is the following.
Suppose that there exists an association a that contains b such that the set
S = {n(') | b € a} does not belong to N(b). Suppose that there is a com-
putation step that enables to modify the state of b according to the states of
the members of a. Then, since the very purpose of the view N(b) is to stock
the identity numbers of all the members of all the associations it belongs to, we
should add S’ to the view N (b) of b.

If the state of b is modified according to a for the first time, then adding S’ to
N (b) is sufficient. But, it can also be the case that b modified its state according
to a in the past and in the meantime another member b’ of a has modified its
identity. Then b should not only add S” to N (b) but it should remove the old set of
identity numbers corresponding to a from its view. The problem is that b cannot
know which set it should remove from its view. However, since our algorithm
ensures that the identity numbers of individuals can only increase, we know that
the eventual old set of numbers S is weaker for <; than S’ and consequently,
by removing all the S <; S’, we are sure to delete all invalid information. Of
course, we can also delete legitimate informations from the local view of b. But
in this case, b can recover this information by some new applications of R4 to
the other associations that contain b.

R42

if Vb,b" € a, M(b) = M (') and n(b) # n(b),

Vb € a,n(b) # 0 and V(n(b),¢,N) € M(b), (¢, N) =2 (A(b), N(b))

and {n(b’) | b € a} ¢ N(bo) then

S i={n() |V € a};
N'(bo) := N(bo) \ {S | S <1 8} U{S');
M (bo) := M (bo) U {(n(bo), A(bo), N'(bo)) };

Properties. The algorithm we described has the same interesting properties as
the one described in Section Bl And from Lemma [Il we get:

Theorem 2. For every communication structure C, there exists a naming
algorithm for C wusing cellular unlabelled megotiations if and only if C is
submersion-minimal.

Again, if the individuals initially know |B(C)|, then the termination detection
of the algorithm is possible in a submersion-minimal communication structure:
once an individual gets the number |B(C)|, it knows that each individual has a
unique number that will not change any more.

4.2 TUnlabelled Negotiations

We add time-stamps to local views in order to obtain a pseudo-covering with the
final labelling. Consider a communication structure C = (C, \) with an initial
labelling A\: B(C) — L. Here again, each individual b € B(C) will acquire new
labels of the form (A(b),n(b), N (b), M (b)) where:
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— n(b) € N is the identity number of b.

— N(b) € Phin(Prn(N) x N) is the local view of b. Intuitively, the algorithm will
try to update the local view of b such that N(b) contains a set {n(d’) | V' € a}
for each association @ that contains b. Moreover, a time-stamp o will be
associated to each of these sets in order to enable an individual, when it is
possible, to detect if it belongs to different associations whose members have
the same numbers.

— M (b) is the mailbox of b and it contains the whole information the individual
b has about the network.

Again, we need a total order on local views. Consider two sets N7, No whose
elements are some pairs (S, 0) where o € N and S € Pgn(N). Given two elements
(S,0) and (57, 0"), one will generalize <1 to say that (S,0) <1 (5,0') if S <3
S orif S =1 5 and o < o'. We now define a new order <3 for elements of
Prin(Pan(N) x N). We say that Ny <3 No if the maximal element for <; of the
symmetric difference Ny A Ny = (N7 \ N2) U (N2 \ Np) belongs to N,. Again,
we extend <3 to a total order on L X Pgn(Psn(N)): (¢, N) <3 (¢/, N') if either
<yt or (0 =0 and N <3 N').

Unlabelled negotiations rules. The label of an individual b after the appli-
cation of a relabelling rule to an association a that contains b is denoted by
(A(D),n/(b), N'(b), M'(b)). The three first rules have the same meaning as the
three first rules of the algorithms described above.
Rll
if 3b,6' € a, M(b) # M(V') then
Vb € a, M'(b) := | M(b)

bEa

if n( ) =0 or 3(n(b),£,N) € M(b) such that (A\(b), N(b)) <3 (¢, N) then
(b) :== 1+ max{n’' | (n',¢',N") € M(b)};
b) := M(b) U {(n'(b), A(b), N (b))};

i Vb, b € a, M(b) = M(¥)
and Vb € a,n(b) # 0 and V(n(b),£,N) € M(b), (¢, N) <3 (A(b), N(b))
and 3bo, b1 € a such that n(by) = n(b1) then

n'(bo) :== 1+ max{n’ | (n', €, N") € M(bo)};

M (bo) = M(bo) U {(n (bo), Albo), N (b)) };

The fourth rule enables to update the local views of all the members of an
association in one computation step. This rule can be applied to some association
a only if the preceding ones cannot be applied to a. One can apply this rule to a
if there does not exists any time-stamp o such that for each b € a, (o, {n(V’) | V' €
a}) belongs to N (b). When the rule is applied, a new time-stamp o’ is generated
and (o', {n(t/) | b’ € a}) is added to N(b) for each b € a. For the same reasons
as in Section 1] each time we add an element (S’,0’) in N(b), we remove all
the elements of N(b) that are smaller than (S’,0") for <;.
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R4Z
if Vb, 0’ € a, M(b) = M(b') and n(b) # n(b)
and Vb € a,n(b) # 0 and ¥Y(n(b),£, N) € M(b), (¢, N) <3 (A(b), N(b))
and Po such that Vb € a, ({n(b') | ¥ € a},0) € N(b) then

o =1+ max{o|3b € a,3(S,0) € Nb)};

S":={n(b) | b € a};

Vb € a, N'(b) = N(B)\ {(S,0) | (5,0) <1 (5',0')} U{(S',0)};
Vb € a, M'(b) := M(b) U {(n(b'), \(b\), N'(b')) | V' € a};

Properties. The algorithm we described has the same interesting properties as
the ones described in Sections Bl and Bl Finally, we have:

Theorem 3. For every communication structure C, there ezists a naming al-
gorithm for C using unlabelled negotiations if and only if C is pseudo-covering-
minimal.

Again, if the individuals initially know | B(C')|, then the termination detection of
the algorithm is possible in a pseudo-covering-minimal communication structure:
once an individual gets the number |B(C)|, it knows that each individual has a
unique number that will not change any more.

5 Final Remarks

The homomorphisms we introduced generalize locally constrained graph homo-
morphisms. These graph homomorphisms have already been studied in the lit-
erature [6/19] and one can wonder how the combinatorial properties satisfied by
graph homomorphisms can be generalized to homomorphisms of communication
structures. Locally constrained graph homomorphisms have also been studied
from the complexity point of view [I3JI5]. In particular, it has been shown in
[12] that it is co-NP-complete to decide whether a graph admits a naming algo-
rithm in the models studied in [SRQITO/T7]. An interesting corollary of this result is
the following : The problems that ask whether a given communication structure
C admits a naming algorithm using labelled negotiations, cellular labelled ne-
gotiations, unlabelled negotiations, cellular unlabelled negotiations respectively,
are co-NP-complete.
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Abstract. We present a novel application of hyperedge replacement
grammars, showing that they can serve as an intuitive formalism for
abstractly modeling dynamic data structures. The aim of our frame-
work is to extend finite-state verification techniques to handle pointer-
manipulating programs operating on complex dynamic data structures
that are potentially unbounded in their size. The idea is to represent
both abstraction mappings on user-defined dynamic data structures and
the (abstract) semantics of pointer-manipulating operations using graph
grammars, supporting a smooth integration of the two aspects. We
demonstrate how our framework can be employed for analysis and ver-
ification purposes, e.g., to prove that a procedure preserves structural
invariants of the heap.

1 Introduction

Techniques for analyzing pointer programs are highly desirable. Programming
with pointers is error-prone with potential pitfalls such as dereferencing null
pointers and the emergence of memory leaks. When considering pointer programs
we face the problem of infinite state spaces arising due to the unboundedness of
the heap. Thus for employing verification methods like model checking in this
scenario, abstraction techniques are indispensable.

We present an approach to abstracting state spaces of pointer programs op-
erating on linked data structures of arbitrary size and shape. In our framework,
states of the heap are modeled by hypergraphs, and both pointer-manipulating
operations and abstraction mappings are represented by hypergraph transforma-
tions. More concretely we employ hyperedge replacement grammars to specify
data structures and their abstractions. The essential idea is to use the replace-
ment operations which are induced by the grammar rules in two directions. By
a backward application of some rule, a subgraph of the heap can be condensed
into a single nonterminal edge, thus obtaining an abstraction of the heap. By
applying rules in forward direction, certain parts of the heap which have been
abstracted before can be concretized again. Later we will see that this opera-
tion will be required in order to avoid the necessity for defining the effect of
pointer-manipulating operations on abstracted parts of the heap.
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Due to the generality of this framework, the use of hyperedge replacement
grammars does not always ensure the boundedness of the resulting abstract
heaps and, thus, the finiteness of the corresponding transition systems. The
formalism can therefore be extended by introducing an additional parameter
which allows to limit the size of the heaps. We sketch this aspect in Sct. L3} it
is not required for understanding the actual abstraction framework.

Altogether we obtain an expressive and highly parametrized framework which
allows to specify complex dynamic data structures and their abstractions in an
intuitive way. Our approach is illustrated by considering a simple programming
language and an example program operating on a cyclic, doubly-linked list. Using
our formalism we will be able to show that the program preserves the structure
of the list, independent of its size.

2 Related Work

Related work on the topic of analyzing pointer-manipulating programs can be
classified into the following (often overlapping) categories: Shape analysis is a
static analysis technique that represents recursive data structures of unbounded
size by finite structures, called “shape graphs”, which are usually formalized by
three-valued logical structures [0I23]. Predicate abstraction abstracts the state
space of the program by evaluating it under a number of given predicates, ob-
taining a Boolean program which conservatively simulates all potential execu-
tions [BOUTI9). Regular model checking is a framework for unified verification of
infinite-state systems based on automata theory. It represents states using words
(trees) over a finite alphabet and sets of states using finite (tree) automata [7].
Dataflow analysis is a technique for gathering information about certain aspects
of a program using its control flow graph. This approach is generally efficient
but restricted to rather shallow properties of programs such as aliasing rela-
tions [I7], points-to information [25], or pointer range analysis [24]. Hoare-style
approaches extend first-order logic by reachability predicates over heap nodes
[RTI5]. Separation logic has been proposed as an extension to Hoare logic that
permits local reasoning about linked structures, supporting features to support
modular correctness proofs for pointer-manipulating programs [1822].
Research in the field of graph transformations often concentrates on verify-
ing and abstracting graph transformation systems, e.g. by employing so-called
“Petri graphs” [I5] or model checking state spaces generated by graph gram-
mars [I3]. We, however, make use of graph grammars for abstraction. Existing
approaches with similar ideas essentially try to represent the shape of heap data
structures by (abstract) graphs, and to implement statements of a program-
ming language by graph transformation rules [20/21]. The framework presented
in [T2IT0] is quite close to ours; the authors use graph reduction grammars for
abstractly representing pointer structures. Their approach — which so far only
handles shape safety — requires to specify an abstract transformation for each
operation modifying a data structure. In contrast, we only require an abstraction
specification; pointer operations do not need to be redefined in dependence of
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this abstraction since they are handled automatically. Another grammar-based
approach to heap abstraction is presented in [14], however, it only supports tree
data structures and cannot handle DAGs and general graphs as we do.

Thus our approach is unique in that it offers a new, descriptive way for spec-
ifying abstractions on arbitrary data structures. It supports dynamic memory
allocation (leading to unbounded heap sizes) and destructive updates. In addi-
tion it is easily extendable to concurrent programs with dynamic thread creation
along the lines of [16].

3 Hyperedge Replacement

For the realization of our framework we concentrate on hyperedge replacement
grammars [I1] as they provide sufficient expressive strength for our application
but still share some of the nice properties of context-free string grammars. In
the following we introduce some notations that will be useful in the specification
of our framework.

Given a set S, S* denotes the set of all finite sequences (strings) over S. For
s € S* the length of s is denoted by |s|, the set of all elements of the sequence
s is written [s], and by s(i) we denote the ith component of s. Given a tuple
t = (A,B,C,...) we sometimes write ta, tp etc. for the components if their
names are clear from the context.

The domain of a function f is denoted by dom(f). For two functions f and g
with dom(f)Ndom(g) = 0 we define fUg by (fUg)(z) = f(x) if x € dom(f) and
(fUg)(z) = g(x) if 2 € dom(g). For a set S C dom(f) the function f | S is the
restriction of f to S. Every f: A — B is implicitly defined on sets f : 24 — 28
and on sequences f : A* — B* by point-wise application. By f[a/b] we denote
the function update defined by f[a/b](a) = b and Ve # a : fla/b](c) = f(c). The
identity function on a set S is idg.

3.1 Hypergraphs

Hyperedge replacement grammars operate on hypergraphs, which allow hyper-
edges connecting an arbitrary number of vertices. Let X' be a finite ranked alpha-
bet where 7% : X — N assigns to each symbol a € X its rank 7k(a). We partition
Y into a set of nonterminals Nx; C X and a set of terminals Tx, = X\ Nx. We
will use capital letters for nonterminals and lower case letters for terminal sym-
bols. We assume that both the rk function and the partitioning are implicitly
given with 3.

Definition 3.1. A (labeled) hypergraph over X is a tuple H = (V, E, att, ¢, ext)
where V' is a set of vertices and E a set of edges, att : E — V* maps each edge
to a sequence of attached vertices, { : E — X is an edge-labeling function, and
ext € V* a sequence of pairwise distinct external vertices.

We require that for all e € E: |att(e)| = rk(£(e)). The set of all hypergraphs
over X is denoted by HGraphy,. Furthermore we use the notations E(v) := {e €
E | v € [att(e)]} for the edges attached to a vertex and |H| := |V|+ |E| for the
size of a hypergraph.
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Thus edges are separate objects in the graph and are mapped to sequences of
attached vertices. The external vertices play an important role in graph trans-
formation steps. We will usually not distinguish between isomorphic copies of a
hypergraph. Two hypergraphs H; and Hs are isomorphic, written Hy = Ho, if
they are identical modulo renaming of vertices and edges.

To facilitate notation later on we introduce the notion of a handle which is a
hypergraph consisting of only one hyperedge attached to its external nodes.

Definition 3.2. Given X € X with rk(X) = n, the X-handle is the hypergraph
X* = ({vi,...,vn},{e},{e = v1..0,},{e — X}, vi...v,) € HGraphy,.

3.2 Hyperedge Replacement Grammars

Now we are ready to define hyperedge replacement grammars. They share some
pleasant properties with context-free string grammars such as confluence and
associativity [II], which is not the case for most other types of graph grammars.

Definition 3.3. A hyperedge replacement grammar (HRG) over X' is a set G of
(production) rules, each of the form X — H with X € Ny and H € HGraphy,
where |exty| = rk(X).

We denote the set of hyperedge replacement grammars over X by HRGy and
assume that there are no isomorphic production rules, i.e., rules with identical
left-hand and isomorphic right-hand sides.

Fig. [ depicts a grammar generating doubly-linked lists. The only nonterminal
is the symbol D, and the letters n and p are respectively used to model the next-
and previous-pointers. In the (rule-)graphs the rank of all symbols is two. The
small numbers close to the connecting edges represent the order of the connected
vertices and the vertices shaded in gray are the external nodes. Rules p; and po
are “redundant”; this is necessary for concretization to work (see Sct. E.T]).
The rules specify for each nonterminal X a re-
placement hypergraph H that will replace (the p —
hyperedge labeled by) X when the rule X — H is
applied. When a hyperedge e labeled by a nonter-
minal is replaced, the external vertices of the re-
placement graph are matched with the attached
vertices of e. Thus a hyperedge replacement rep- ,
resents a local change in the graph structure.

Definition 3.4. Let G € HRGy, H €
HGraphy, p = X — K € G and e € Eg such »s
that l(e) = X . Let Ey_. := Eg\{e}. We assume
w.l.0.g. that Vg NV = Eg N Ex =0 (otherwise
the components in K are renamed). The substi-
tution of e by K, J € HGraphy, is defined by

VJ:VHU(VK\[extKD E;=Fy .UFEg
EJ:(EH [EH,E)UgK erty = exty
atty =modo ((atty | Eg_.) U altk)
with mod = idy, [extx (1)/attg (€)(1), ..., extr (rk(e))/att g (e)(rk(e))]

Fig.1. HRG for Doubly-
Linked Lists
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We write H = J if there exist e and X — K as above. The reflexive-transitive
closure and the inverse of =>¢ are denoted by ==¢& and = L respectively.

The language of a grammar G € HRGy consists of all terminal graphs (that is,
graphs that have only edges with terminal labels) that can be derived from a given
starting graph H € HGraphy;, i.e., L(G, H) = {K € HGraphy, | H =¢ K}.

For actual applications it is important to not have nonterminals in the gram-
mar from which no terminal graph is derivable (VX € Ny : L(G, X*®) # (). We
call such grammars productive. Any HRG can be transformed into an equivalent
productive grammar if its language is non-empty.

We are interested in (heap) graph abstractions for analysis and verification,
which need to be effectively computable. Since, as we will see later, abstractions
are obtained by backward applications of rules, the termination of the abstrac-
tion procedure can be ensured by requiring all rules in a HRGs to be increasing,
meaning that the replacement graph (if it contains nonterminals) is “larger”
than the handle of the respective nonterminal.

Definition 3.5. A grammar G € HRGy is increasing iff for all X — H € G
such that £y (Eg) N Ny # 0 we have | X°®| < |H|.

Theorem 3.6. Let G € HRGx be increasing and H € HGraphy,. Then the set
{K € HGraphy, | K =g H} is finite.

Proof. The increasingness of GG implies that for any two hypergraphs H; and Hy
with Hy =/ H, we have |H,| < |Hz| or Hy € HGraphy,_. Thus for every finite
hypergraph H there is a bound n € N such that all derivations yielding H are
of length <n (no “loops” are possible), which proves our claim. a

As we will see in Sct. @] the result of Thm. is essential for our abstraction
technique since it allows us to compute a minimal abstract heap representation.
Note that the HRG in Fig. [[is increasing.

4 Abstraction of Heap States

For using HRGs as an abstraction mechanism for pointer-manipulating programs
we have to represent heaps as hypergraphs. This is done by introducing two
types of terminal edges: edges labeled with program variables (which we include
in the terminal alphabet) are of rank one, edges of rank two — labeled with
record selectors — are representing pointers in the heap. Formally, we let Ty, =
Vars W Sely, where rk(Vary) = {1} and rk(Selx) = {2}. Finally there are
nonterminal edges of arbitrary rank that are used in the abstraction and that
stand for (a set of) entire subgraphs.

Definition 4.1. A heap configuration over an alphabet X is a hypergraph H €
HGraphy, such that Vo € Vary, : [{e € Ey | lu(e) = z}| < 1 and exty = ¢
where Vary, and Sely, satisfy the constraints mentioned above. We denote the
set of all heap configurations over X — including a special configuration Heyr
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which is reached if pointer errors occur (i.e., dereferencing of a null pointer) —
by HCx.. A heap configuration H is called concrete if H € HCp,,. We identify
two heap configurations H and H' if H = H'.

Additional notation. For H = (V, E, att,l,e) € HCyx, x € Vary and v € V we
write z —pg v to denote that Je € E : l(e) = x A att(e) = v. Writing x —p nil is
equivalent to v € V' : & <z v. (That is, variables pointing to nil are represented
by omitting the corresponding edge.) For v,w € V and s € Sels; we write v Sgw
to indicate that Je € E : £(e) = s A att(e) = vw.

4.1 Abstraction and Concretization

When modeling the semantics of assignments it is convenient to assume that
those edges which are connected to vertices that are referenced by variables, are
all labeled by terminal symbols. If there is an edge e violating this property it is
called a wviolation point. For all those edges we record the indices of the attached
vertices that are the targets of program variables.

Definition 4.2. Let H € HC's;. The set of violation points VP(H) C Ey x N
1s given by:

(e,i) € VP(H)
< l(e) € Ny A(Fx € Vars,v € Vi 1 x —gv Av = attg(e)(i))

If no violation points exist a configuration is called admissible. As mentioned in
the introduction, this will avoid the necessity for defining the effect of pointer-
manipulating operations on abstracted parts of the heap.

Definition 4.3. The set of all admissible heap configurations is given by
aHCy = {H € HC5 ‘ VP(H) = @}

We use forward derivations to restore admissibility of a configuration. This partial
concretization (see Def. [L7T), however, raises additional requirements for the pro-
duction rules. To see this, let us again consider the example from Fig.[Il Here we
could omit the rule p; and would still obtain a grammar that suffices to generate the
language of all doubly-linked lists, thus ps is redundant. Omitting it, though, would
lead to problems when concretizing since there might be an unbounded derivation
sequence starting from a nonterminal until finally one terminal symbol is generated
at its place and thus we have infinitely many concretizations. To circumvent this
problem we considered to use Greibach Normal Form for hyperedge replacement
grammars [I2] (a generalization of Double Greibach Normal Form of context-free
string grammars). For a HRG in Greibach Normal Form a single rule application
suffices for concretization. Unfortunately this idea proved to be impractical since
already for simple grammars the Greibach Normal Form is often huge [12]. Thus
we decided to introduce a class of HRGs that we call heap abstraction grammars
whose definition is admittedly more complicated.

Definition 4.4. An increasing and productive graph grammar G € HRGy is a
heap abstraction grammar if
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1. bg(Eg)N Vars =0 for all X — H € G and,

2. for every X € N with vk(X) =k there exist Gy, ..., Gy C G such that
- Uf:l GzX =G,
— L(G¥, X*) = L(G,X*®) for all 1 <i <k, and
— ly(En(exty(i))) C Tx for all X — H € G¥.

The first condition disallows variables (from which we do not abstract) as edge
labels. The second condition enforces a kind of symmetry for rules that have
nonterminal edges connected to external vertices. The idea is to use only rules
from G7¥ when concretizing a nonterminal edge from the ith attached vertex
(i.e. to this vertex a variable is attached). Since we have subgrammars for all 4
we can concretize from any direction while avoiding “loops”. Note that the G
are usually not disjoint.

In Fig. [ rules p; and ps fulfill the conditions of Def. 4} the two rules to-
gether enable concretization from either “side” of a nonterminal edge while the
generated graph language is retained. Thus, when concretizing a D-edge it suf-
fices to apply either py or ps (if p1 concretizes “from the right-hand side”). For
this example we have G = {p1, p3} and G¥ = {p2,p3}.

Based on the concepts presented so far we can formalize the notion of an
abstraction function g, called heap abstractor. According to the principle that
abstraction is performed by backward application of rules, 2 returns some
irreducible, admissible successor of the current heap configuration with respect
to the inverse derivation relation = L

Definition 4.5. Let G € HRGyx be a heap abstraction grammar. A heap ab-
stractor over G is a function Ag : aHCsx, — aHC's; such that

Ac(H) € {K € aHCsx, | K = H s.t. }J € aHCx with J =>¢ K}.

Note that heap abstraction mappings are not uniquely defined. This is only
the case if = !is confluent which, together with its well-foundedness that is
implied by the increasingness of the HRG according to Thm. 3.6 yields unique
normal forms. In general the abstractor should minimize the size of a heap
configuration. Also note that this definition immediately implies the correctness
of our abstraction in the sense that every concrete heap configuration can be
re-generated from its abstraction:

Corollary 4.6. Under the above assumptions, H € L(G,Uq(H)) for every H €
aHCTE .

Since heap objects that are not reachable from program variables play no role in
program semantics we delete them using a garbage collector. When computing
the reachability of vertices we handle hyperedges of rank greater than two, i.e.
nonterminal edges, conservatively as undirected edges connecting all attached
vertices. We here omit the exact definition of the garbage collector and denote
the mapping by GC : HCy — HCy.
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As already mentioned before, in addition to abstraction also concretization is
necessary to restore admissibility. The essential point is that we employ partial
concretization by applying grammar rules in forward direction. Here derivation
stops as soon as the resulting heap configuration is admissible, in order to mini-
mize the degree of concretization. Thus the properties of heap abstraction gram-
mars as required in Def. [£4] guarantee that only a finite number of configurations
can be obtained.

Definition 4.7. Let G € HRGyx be a heap abstraction grammar and let the
G¥X C G be given as in Def. [[} The heap concretizer, €g : HCx, — 2°HC= s
then defined as follows:

Cc({K € HCx | H =>gx K}) if 3(e,i) € VP(H) A lg(e) = X
{H} if He aHCYy

Note that, in contrast to a heap abstractor (Def. LH]), the heap concretizer is
uniquely defined as it yields all reachable (first) admissible configurations.

QG(H):{

4.2 Pointer Programs and Their Semantics

Previously we already introduced the memory model, abstraction and concretiza-
tion techniques but we still did not consider any programming language. In the
following we will do this; the language itself is kept minimal to reduce the formal
effort in the specification of the semantics, though it is sufficient to model most
standard concepts in pointer programs.

Definition 4.8. A pointer program 7 is a sequence of statements s1;...; 8, with
s; € CMD where CMD is the set of the following commands:

if BExp goto n (conditional jump)
goto n (unconditional jump)

PExp := PExp (pointer assignment)
new(PExp)  (object creation)

Furthermore we have:

PExp == nil |z (x € Vars) | z.s (s € Sels)

BExp ::= PExp = PExp | BExpABExp | -BExp  Cclte0

1 if x = nil goto 10;

Please note that for simplicity the programming lan-
guage does not support arbitrary dereferencing depths.
This is no restriction since this feature can be em-
ulated by multiple assignments. An object deletion
command is omitted since a nil-assignment with a sub-
sequent garbage collection has the same effect. The pro-
gramming language can be extended with unbounded
threads and atomic regions using the concepts we in-
troduce in [16].

In Fig. Blan example program is shown that deletes
an element from a cyclic doubly-linked list. The se-
lectors n and p respectively model the next- and

2 if © = x.n goto 9;

3 Y =T
4T = X.p;
5 TN I= Y,
6 Y.p =
7y = nil;
s goto 10;
9 T 1= nil;

10}

Fig. 2. Delete from an
arbitrary Cyclic Doubly-
Linked List
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previous-pointers. The variable z is assumed to point to some object in the
structure while y is used as an auxiliary variable.

In the pointer semantics we use the special value err to denote that a pointer
error (e.g. nil dereference) occurred.

Definition 4.9. For H = (V, E, ait,{, ext) € aHC the semantics of pointer
expressions Py[-] : PExp — V U {nil,err} is defined as follows:

Prr [[ml
Pr|
Pul

nil
v if x —>gv
nil if x —gnil
v
nil
err

if Pulz]#nil A Pulz] <pv
if Pule]#nil A PveV:Pylz] Suv
if Pulzx] = nil

Pr .

Pa[.
P .

The semantics of Boolean expressions By [ ] : BExp — B U {err} is as usual but
strict, i.e. if one of the arguments (pointer or Boolean expression) yields err the
result is also err. Next we can formulate the semantics of assignments and new-
statements, still without considering the additional steps, e.g. concretization,
garbage collection and abstraction.

CIJCIJCIJHH

]
]
]
]
]
]

Definition 4.10. Let H € aHC'x, and o,/ € PExp. Then we define H|a /'] €
HC's as follows:

— Hlz.5/d'| = Heyy if x g nil or Pyla'] = err

— Otherwise we distinguish the cases given in Fig. [3 where the modifications
are represented by graph transformations. Here the triangle vertez is assumed
to be Pya']. Thus there is more than one possible result. Graph objects not
shown in the source or target graphs remain unchanged.

Hla/new| C aHC's is given similarly by:

— Hlx.s/new| = Heyy if & <—p nil
— Otherwise the cases given in Fig. [3 apply where the triangle vertex is a new
vertex inserted into Vi before applying the transformations.

Combining all the concepts introduced before we obtain the abstract heap se-
mantics that captures the effect of the commands on the heap. For the more
involved commands (assignment, new) the following steps are necessary:

1. execution of the actual assignment (nondeterministic)
2. garbage collection

3. partial concretization (nondeterministic)

4. re-abstraction

A fifth step may become necessary if the abstraction grammar is not suitable
for the data structures occurring in the program. We then need to “artificially”
bound the heap configuration by collapsing vertices. This is done by a so-called
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1

LR
e
¢

@ @ Vertices 1 2 Hyperedge labeled with s
A P,la’] or new vertex P a-labeled hyperedge must not exist

Fig. 3. Assignment / Creating Objects

heap compactor which we only briefly sketch in Sct. in favor of concentrating
on the actual abstraction.

Finally we can introduce an abstract “transition relation” that captures the
effect of the statements in our programming language.

Definition 4.11. Let G € HRGyx be a heap abstraction grammar, and g :

aHCs, — aHC's a heap abstractor. The abstract heap transformation relation

:h>§ (aHCsx, x CMD x aHCY) is given as follows for H € aHCsx,, H # Heyy

(we omit the if and goto statements since their semantics is straightforward
and has no effect on the heap):

K € As(Cq(GC(H[a/a])) K € Ag(Ca(GC(H[o/new])))

Ha:=o L K H,new(a):h>K
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Fig. 4. Delete on Abstract Graph
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Figure[shows the semantics of the delete () operation from Fig. 2 based on the
HRG for doubly-linked lists (Fig. [dl). We start with a configuration with three
nodes and one D-edge, that is, it represents arbitrary large cycles with at least
four nodes (see the left heap in subfigure 6). The if-statements have no effect
in this case. After the first assignment y := x.n, we obtain the configuration
depicted in subfigure 1. Here the variable y is too close to the D-edge and thus
the configuration is not admissible. We have to concretize it using the rules p;
and p3 (from GP), obtaining two resulting configurations where one only contains
terminal edges (application of ps3). Rule py is not applicable since it would not
produce a terminal edge on the left-hand side. Note that this does not violate
correctness, since the HRG from Fig. [l is a heap abstraction grammar.

The next assignment = := z.p makes a further concretization necessary since
the variable x is now too close to the D-edge. Now rules ps and p3 (from GT)
are applied to the left-hand graph from subfigure 2, and we obtain two results
one of which is concrete. The third graph is resulting from the right-hand graph
in subfigure 2.

The two assignments x.n := y and y.p := x exchange the next- and previous-
pointers in the subgraph between x and y; the result is shown in subfigure 4.
The following garbage collection (the lower vertex is unreachable) and the nil-
assignment to y yield the states visualized in subfigure 5. A re-abstraction apply-
ing rules p; to the left-hand and p3 to the middle graph leads to the same result.
The left-hand heap in subfigure 6 is again the initial graph, and the right-hand is
the concrete one that results from deleting one node in the (minimal) cyclic list
with four elements. (It is the same as in subfigure 5 since no rule is applicable).

Hence we just proved that delete() preserves the structure of cyclic doubly-
linked lists of arbitrary size. The heap compactor is not required for our example
since all abstract configurations have less than five nodes. For an insert-operation
one could easily give a similar proof and would obtain even less configurations
(due to the lower degree of nondeterminism).

The correctness proof for our abstraction technique requires to first define the
transformation relation on concrete heaps, which is straightforward, and then
to relate concrete and abstract computations in the following way. Whenever a
concrete heap H € aHCr,, is transformed into H' € aHCr,, and its abstraction
A (H) € aHCy is (abstractly) transformed into H” € aHCy, then H' €
L(G,H"). That is, every concrete computation has its abstract counterpart,
and thus our abstraction constitutes a safe approximation of the system.

4.3 Enforcing Finiteness

This section is optional reading and gives a short overview of the heap compactor
which may be necessary to enforce a finite state space in certain situations
where unsuitable abstraction grammars are used. The cost is an inherent loss
in precision. The compactor works by merging vertices to form a special sink
vertex if the configuration exceeds a size bound given a priori. This vertex that
can represent arbitrary subgraphs has to be considered in the semantics and
yields additional nondeterminism.
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Definition 4.12. A heap compactor is a function k : aHCx; xN — aHCs;. For
H,K € aHCs, and k € N, k(H, k) = H if |Vg| < k and otherwise x(H, k) = K
such that:

Vk| =k

sink € Vg C (Vg U {sink})

Ex ={e€ Egy||attg(e)]\ {sink} #0 VvV L(e)
€ Vars}

attg = mod o attyg where

if v eV
mod : Vi — Vi, mod(v) = v‘ do ‘K
sink  otherwise
— Ul =0y | Ex

Thus the heap compactor only modifies a config-
uration if the abstractor (which is to be executed
beforehand) does not “compress” it enough. Its pur-
pose is to guarantee finiteness of the semantics. If
the constant k is large enough, small inconsistencies
as they occur often temporarily when manipulating
data structures do not result in a loss of precision
since the compactor does not modify configurations
with at most k£ nodes.

In Fig. Bl the compactor is visualized by an exam-
ple. The vertices shaded in gray are merged to form
the sink vertex visualized in black. For the actual
implementation of the heap compactor a heuristics
that merges connected vertices (otherwise poten- pig. 5. Heap Compactor
tial dependencies between independent parts of the (Example)
graph are created) and those that are distant from
the program variables seems promising. The latter will reduce the probability
that the sink vertex plays a role in the program semantics.

Modifying the expression and assignment semantics is mostly straightforward
and is therefore omitted here. One essentially needs to consider additional nonde-
terministic cases which are introduced by the sink vertex. This leads for example
to a multi-valued Boolean semantics: if an expression refers to the sink vertex we
cannot decide anymore whether it is true or not and thus have to consider both
cases. For assignments we get a nondeterministic step if a variable references the
sink vertex.

5 Conclusions and Future Work

We have presented a framework for the analysis of pointer-manipulating pro-
grams operating on arbitrary dynamic data structures. The abstraction mecha-
nism is parametrized via a hyperedge replacement graph grammar that models
the data structure(s) used in the program. We showed how the abstract states
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can be transformed and how abstract state spaces can be generated. When em-
ploying a compactor our method ensures that these state spaces are always finite,
even if the underlying data structure is outside of the specification. Smaller in-
consistencies that naturally occur when manipulating data structures can be
handled without loss of precision.

The programming language can be extended with concurrency, e.g. unbounded
threads and atomic regions, without major changes [I6]. This works essentially
by modelling the control-flow semantics separately from the heap semantics by
a Petri net and then combining both for state-space exploration. Hereby an
orthogonal abstraction is applied on the control-flow part.

Currently we are working on an implementation of our framework. We are
planning to introduce a logic to formulate verification properties and a model
checking algorithm to verify those on a given program. Furthermore we will
analyze how data structure definitions — as they occur in many programming
languages — can be used for automatically generating an appropriate abstraction
grammar.
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Abstract. Definitional trees have been introduced by Sergio Antoy in
order to design an efficient term rewrite strategy which computes needed
outermost redexes. In this paper, we consider the use of definitional trees
in the context of term-graph rewriting. We show that, unlike the case of
term rewrite systems, the strategies induced by definitional trees do not
always compute needed redexes, in presence of term-graph rewrite sys-
tems. We then define a new class called inductively sequential term-graph
rewrite systems (istGRS) for which needed redexes are still provided by
definitional trees. Systems in this class are not confluent in general. We
give additional syntactic criteria over istGRS’s which ensure the conflu-
ence property with respect to the set of admissible term-graphs.

1 Introduction

Many declarative languages are based on term rewrite systems (TRS). There
are good reasons for that, they actually benefit from a solid logical foundations
(equational logic, model-theory, proof methods) as well as very efficient imple-
mentation techniques. Term rewrite systems have been used also as a unifying
computational model for declarative languages sharing both functional and logic
features with very efficient operational semantics [5].

However, real-life programs, very often, deal with complex data-structures
built by means of pointers (e.g., circular lists, doubly-linked lists, etc.). Such
data-structures can be modeled as term-graphs [GT9] and are sometimes manda-
tory for efficiency reasons, namely time and space complexity of algorithms. Term
rewriting constitutes a computational model which is Turing-complete and thus
can encode theoretically any transformation over term-graphs, but such encod-
ings are in general cumbersome and too costly. Thus term-graphs appear as a
good trade-off to use rewrite systems to compute with general data-structures
without using all the machinery specific to graph transformations [20/I3J14].
In recent works, e.g. [I3II8] term-graph rewriting has also been considered as
a means to implement naturally, in declarative languages, the call-time choice
semantics introduced in [TI6].

* This work has been partly funded by the project ARROWS of the French Agence
Nationale de la Recherche.

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 84 2008.
© Springer-Verlag Berlin Heidelberg 2008



Inductively Sequential Term-Graph Rewrite Systems 85

A new class of term-graph rewrite systems (hereafter, noted tGRS) has been
introduced recently in [§]. This class is a conservative extension of those intro-
duced in [9/T0]. It provides some features dedicated especially to pointer rewriting
such as redirection of pointers or mnode constraints (see section [2]). These fea-
tures allow one to write, in a rule-based language, algorithms with efficient space
complexity such as in-situ list reversal or those manipulating node constraints
such as the length of circular lists. Such algorithms were not possible to encode
directly in previous works regarding term-graph rewriting such as [T9I9UT0].

The new features of tGRSs are very appealing. That is why, we intend to pur-
sue our efforts in investigating the class of tGRSs. In [8], a categorical approach
has been proposed, [12] present a discussion about the use of term-graphs with
priorities as a means to overcome the non-confluence issues and [I1] presents
the first general and complete narrowing procedure which is able to synthesize
solutions with circular data-structures.

The present paper is a first step towards the conception of efficient rewrite
strategies in presence of subclasses of tGRSs. We particularly consider the use of
Definitional Trees introduced by Antoy in his seminal paper [I]. Definitional trees
have been successfully used in defining efficient strategies either in term rewriting
and narrowing [II2I5], graph rewriting and graph narrowing [QJI0/4]. We show
that, the strategies induced by Definitional trees do not compute needed redexes
in general. Then, we define a particular class of term-graph rewrite systems for
which the induced strategies are efficient and compute needed redexes.

The paper is organized as follows. The next section defines the class of term-
graph rewrite systems that we consider. In section Bl we show some negative
results regarding the use of definitional trees and introduce the class of induc-
tively sequential tGRSs, for which Definitional trees help to compute needed
redexes. In section @] we show the confluence property for a subclass of induc-
tively sequential term-graph rewrite systems. Section [§ concludes the paper.

2 Preliminary Definitions

In this section we define a class of term-graph rewrite systems, denoted tGRS.
We define the shape of its rules and the process of rewriting. The right-hand
sides of the rules consist of sequences of actions. These actions are intended to
decompose the transformation of graphs into consecutive atomic actions.

Definition 1 (Signature). A many-sorted signature X' = (S, 2) consists of a
set S of sorts and an S-indexed family of sets of operation symbols 2 = Wsec g2
with 2 = Wyes+2y—s. We shall write f : sy ...5, — s whenever f € {24, s, s
and say that f is of sort s and rank s; ...s,. A constructor-based signature X' is
a triple X = (S,C, D) such that S is a set of sorts, C is an S-indexed family of sets
of constructor symbols, D is an S-indexed family of sets of defined operations,
CND =0 and (S,CWD) is a signature.

A term-graph is defined in this paper as a set of nodes and edges between the
nodes [6]. Each node may be labeled with an operation symbol or not. A node
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which is not labeled will act as a variable. Let N/ = W,csN,, be an S-indexed
family of countable sets of nodes. N is supposed to be fixed throughout the rest
of the paper.

Definition 2 (Term-Graph)
A term-graph g over (2, N) is a tuple g = (Ny, Nj?, L4,Sg) such that :

1. Ny is the set of nodes of g, i.e., Ny = Wses(Ny)s with (Ny)s C Ns.
2. N is the subset of labeled nodes of g, Nj* C N
3. Ly, the labeling function of g, is an S-indexed family of functions associating
an operation symbol to each labeled node of g, i.e., L = Wees(Ly)s with
(Lg)s : (NgQ)s — 02
4. Sy, the successor function of g, is an S-indexed family of functions associ-
ating a (possibly empty) string of nodes to each labeled node of g, i.e., Sq =
Waes(Sg)s with (Sg)s : (NJ?)s — N such that for every node n € (Ny)s :
—if (Lg)s(n) = f with f : s1...s, — s, then there exist nq,...,ni € N
such that (Sg)s(n) =mn1...ng and n; € (Ny)s, for alli € 1..k.
— if (Lg)s(n) = c with ¢ € Q2. ¢ (c is a constant), then (Sq)s(n) = ¢ (i.e.,
n has no successor).
We write n € Sg(m) if n is a successor of m.

We write ar(n) for the arity of node n which is equal to the length of Sy(n). A
rooted term-graph, denoted by g™, is a term-graph g with a distinguished node n
(n € Ny) called the root of g. n will be denoted by Rooty. Let g be a term-graph
and n and m two nodes of g (n,m € Ny), we write n ~», m iff m € Sy(n). We
will say that node m is reachable in g from node n iff n «*»g m. A rooted term-
graph g™ is a constructor-rooted term-graph if and only if the root n is labeled
by a constructor (i.e. Ly(n) € C). A rooted term-graph g" is a constructor term-
graph if and only if every reachable node m from the root n (n «*»g m), m is either
labeled by a constructor symbol (Ly(m) € C) or m is not labeled (m ¢ /\ng).

In the sequel, we will assume that all formulae we are considering are well-sorted,
and thus drop subscripts related to the many-sorted framework.

As the formal definition of term-graphs is not very convenient to write ex-
amples, we recall below the linear notation [6] of term-graphs. In the following
grammar, the variable A (resp. n) ranges over the set 2 (resp. NV):

TERMGRAPH ::= NODE | NODE + TERMGRAPH
NODE == n:A(NODE,...,NODE) | n:e | n

The root of a rooted term-graph defined by means of a linear expression is the
first node of the expression. n:e means that node n is not labeled. 4+ stands for
the union of graph definitions.

Ezample 1. Let G{ be the graph (see Figll)) defined by G{=(Ngs, N, Las, Say)
such that:

— Ngs ={a,b,c,d, e}

- NGQCIL ={a,b,c,e}
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— Lgg(a) = suce; Lag (b) = f; Lga(c) = g5 Lag(e) = h
— Sge(a) = b;Sga (b) = ce; Sge (¢) = de; Sga(e) = b

GY could also be written using the linear notation as follows:
{=a:succ(b: f(c:g(d:e,e:h(b)),e))

Definition 3 (Homomorphism). Let g7 and g5* be two rooted term-graphs. A
homomorphism h from g7 to g5 is a mapping h : Ng? — J\fgén which preserves
the root, the labeled nodes and the labeling and successor functions, i.e., h(n) =
m, h(./\fgffl) C Nggn, and for each labeled node, p, in g7, Lgr(h(p)) = Lgr(p)
and Sgp (h(p)) = h*(Syr (p)) where h* denotes the extension of h to strings (of
nodes) defined by h*(p1...pr) = h(p1) ... h(pk).

Notice that homomorphisms, as defined above, can map unlabeled nodes to
labeled ones.

Definition 4 (Actions). An action has one of the following forms. We omit
to give sort constraints which are quite straightforward and thus we assume that
all constructions are well-sorted.

— a node definition or node labeling «: (a1, ..., q,) where o, aq, ..., ay
are nodes and f is a label of rank s1, ..., S,. This means that « is labeled by
f and oy ...«y, are the successor nodes of a (S(a) = a1 ...ap).

— an edge redirection or local redirection « >>; 3 where o, 8 are nodes and
ie{l,...;ar(L(a))}. This is an edge redirection and means that the target
of the it" edge outgoing « is redirected to point to the node (3.

— a global redirection o> 3 where o and 8 are nodes. This means that all
edges pointing to « are redirected to point to the node [3.

The result of applying an action a to a term-graph g is denoted by alg] and is
defined as the following term-graph g':

—Ifa=a: flar,...,an) then Ny = Ny U{a,on,...,an}, Ly(a) = f,
Ly (B)=Ly(B) tf B# , and Sy () = a1, ..., 0, Sy () = Sg(B) if B # .
U denotes classical union.

—Ifa=a>; B then Ny =Ny, Ly =Ly, and if Sg(a) = a1,...,q4, ..., 0p
then Sy (a) = ai1,..., 01,0, Qit1,...,0, and for any node v we have
Sy (7) = Sg(7) iff v # . If o does not occur in Ny, then g’ = g.

—Ifa=a> fthen Ny = Ny, Ly = Ly and for all nodes 6 such that
Sg(0) = ai1,...,ap then Sy (0) = o, ..., al, such that for i in 1.n, o) =3

if ; = o, and o = o if a; # o If a0 does not occur in Ny, then g’ = g.

The application of an action a to a rooted term-graph g™ is a rooted term-graph
g™ such that g’ = alg] and root m is defined as follows:

— m =n if a is not of the form n > p.
— m =p if a is of the form n > p.
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a: succ
\
a : succ b:f
}
\ /
b:f c:g
N
/ v \ v
c:g d:e u @ succ
VNN v
d:e e:h v:h
Fig. 1. Term-graph G¢ Fig. 2. Term-graph G5
a: suce
\
b:f
/ " \
w:0 u @ succ a : suce
\ \
v:h w:0
Fig. 3. Term-graph G3% Fig. 4. Term-graph G¢

The application of a sequence of actions u to a (rooted) term-graph g is defined
inductively as follows : u[g] = ¢ if u is the empty sequence and u[g] = u'[a]g]] if
u = a;u’ where ; is the concatenation operation.

Ezample 2

Let G¢ be the graph defined in Ezamplddl (see Figll).

Let G§ be the graph (see Figll) G§ = a : succ(b : f(c: g(d : o, u : succ(v :
h(b))), )

Let G§ be the graph (see Figll) G§ = a : succ(b: f(w: 0,u : suce(v : h(b))))
Let G¢ be the graph (see Fighl) G§ = a : succ(w : 0)

Below we give some examples of the application of actions on the graphs above.
The first line shows the application of the actions v : h(b) ; w: succ(v) ; e > u
on the term-graph G¢. The second line shows the application of the actions
w:0; ¢> w on the term-graph G§. The last line shows the application of the
action b > w on the term-graph G%.

v:h(b); u:suce(v); e u [Gf] =u: succ(v) ; e > ulGY +v:h(b)]=e>
u [G§ 4w succ(v: h(b)] = GS +e: h(b)

w:0; e>w [Gi=c>w [G5+w:0|=Gf+c:g(d:e,u)

b>w [GY =G +b: f(w,u: suce(v: h(w)))
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Definition 5 (Node Constraint). A node constraint is a (possibly empty)
conjunction of disequations between nodes: N\, (a; # B3;). A substitution o :
N — N is a solution of a constraint ¢ = N\, (o # B;) iff for any i € [1..n],
we have o(ay) # o(B;). We denote by sol(¢) the set of solutions of ¢.

Notice that we do not use equality constraints. Such equalities may be encoded
directly into term-graphs.

Definition 6 (Rule, system)

A term-graph rewrite rule is an expression of the form [l | ¢] — r where r is
a sequence of actions, ¢ is a constraint and l is a rooted term-graph s.t. for
any node o occurring in 1, we have Root; ~>; a (i.e. any node occurring in the
left-hand side must be reachable from the root Root;). A rule py is said to be
a variant of a rule py iff p2 is obtained from p1 by (one-one) renaming all the
nodes in p1. A term-graph rewrite system is a set of rewrite rules.

Example 3. We first define an operation, sameloc, which tests whether two ar-
guments are located at the same place or not. Such operation is sometimes used
to enhance the implementation of equality in declarative languages.

r: sameloc(n : e,n) — q: true;r > q
[r: sameloc(n : e,m :e) | n#m] — q: false;r > q

As a second example, we define below the operation length which deals with
cyclic data-structures. length(p : @) computes the number of elements of any,
possibly circular, list matched by node p.

r:length(p: @) — 1/ : length/(p,p);r > 1’

r:length'(p1 :nil,ps : @) — 1" 1 0;r > 1/

r:length'(py : cons(n : e pa: @), py) — 1’ :s(0);r > 1’

[r : length/(p1 : cons(n : e,py : ®),p3 : @) | py # p3] — 1’ : s(q : e);q :
length/(p2,p3);r > 1’

Pointers help very often to enhance the efficiency of algorithms. In the follow-
ing, we define the operation reverse which performs the so-called “in-situ list
reversal”.

2 0:reverse(p: o) — o :reverse (p,q:nil);o>> o

o:reverse' (py : cons(n:e,q:nil),ps: e) — p1 9 p2;0>> Py

o : reverse' (py : cons(n : e, py i cons(m : e, p3 : @), py i @) — P 9 pg;0 >
P2;0 >>9 pP1

The last example illustrates the encoding of classical term rewrite systems. We
define the addition on naturals as well as the function double with their usual
meanings.

r:+n:0,m:e) —=r>m

7 4+(n:succ(p:o),m:e) — q:succ(k:+(p,m));r>q
r: double(n : e) — q: +(n,n);r > q
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Definition 7 (Matching). Let [l | ¢] — r be a rewrite rule and g" a rooted
term-graph. We say that the left-hand side [l | ¢] matches the term-graph g™ at
node p, and denoted by [l | | < gP iff p is reachable fromn (i.e. n >y p) and there
exists a homomorphism, also called matcher, h from | to g7, i.e. h : Ni — N
such that h(Root;) = p and h is a solution of constraint c, i.e., h € sol(c).

Definition 8 (Rewrite Step). Let p be the rewrite rule [l | ¢] — r and g™ be
a rooted term-graph. We say that g™ rewrites to gi* at node p by using the rule
p iff there exists a matcher h : 1 — gP which is a solution of constraint ¢ and
gi" = h(r)[g"]. We write g" =, (11— 91" 9" —p g or simply g™ — g™.

Ezxample 4. Let f,g and h be three defined operations specified by the following
rewrite rules:

n:f(p:07q20)—>n>>p
n3g(p3',q18ucc(m:o))_>w:0;n>>w
n:h(p:e) — wu:succ(v:h(p));n>>u

Let G{,G4,G4 and G¢ be the graphs defined in Example 2l We recall their
definitions below.

G¢ =a:succ(b: f(c:g(d:e,e:h(b)),e))

G =a:succ(b: f(c:g(d:e,u: succ(v: h(b))),u))
G =a:succ(b: f(w:0,u: succ(v: h(b))))

G$ =a : succ(w : 0)

From the rules given in this example, we can get the following derivation. Notice
that we did not report the nodes which are not reachable from the roots of the
considered term-graphs.

a a a a
Gl —e Gy —c Gz = G

3 Inductively Sequential Term-Graph Rewrite Systems

Inductively sequential term rewrite systems have been introduced by Antoy in
[1]. Such systems are defined over constructor-based signatures. The left-hand
sides of the rules are patterns of the form f(ki,---,k,) where f is a defined
symbol and the sub-terms (i.e., the k;’s) are constructor terms. By definition,
the rules of an inductively sequential term rewrite system are stored in data-
structures called definitional trees. Thanks to these data-structures, several effi-
cient rewriting and narrowing strategies have been devised (e.g. [15]).

In this section we consider a subclass of tGRSs which consists of systems that
can be stored within definitional trees.

Definition 9 (Definitional tree). Let SP = (X, R) be a tGRS such that ¥
18 a constructor-based signature. A tree T is a partial definitional tree, or pdt,
with pattern [w | C| iff one of the following cases holds:
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— T =rule([r | C] — ), where [n | C] — r is a variant of a rule of R.

— T = position.branch([r | C),0,T1,...,Tx), where o is a non-labeled node of
m, 0 is of sort s, c1,...,c (k> 0) are different constructors of the sort s
and for all j € 1..k, T; is a pdt with pattern [mj|C], such that 7 is obtained
from w by applying an action which labels the node o with constructor c;,
ie., mj =o0:cj(o1:e,...,0,:0)[m|, where n is the number of arguments of
cj and o1,...,0, are new nodes.

— T = share.branch([r | C|,Th,Tz), where Ty is a pdt with pattern [w | C An #
m] such that n and m are nodes occurring in m and the constraint n # m
does not occur in C and Ty is a pdt with pattern [n' | C] such that 7' is
obtained from 7 by collapsing the two nodes n and m (and their successors).
Le. 7 is obtained by encoding the constraint n = m into .

We write pattern(7T) to denote the pattern argument of a pdt.

A definitional tree 7 of a defined operation f is a finite pdt with a pattern of
the form [p: f(o1: e,... 05, : @) | true], also denoted by p: f(o1:e,...,0, : @),
where n is the number of arguments of f, p,o01,...,0, are new nodes, and for
every rule [l | C] — r of R, with I of the form f(g1,...,gn), there exists a leaf
rule([l' | C'] — ") of T such that [l | C'] — r' is a variant of [l | C] — r.

Ezxample 5. We consider the auxiliary operation length’ defined in Example
We recall first its rules and provide a definitional tree for it. We give only the
pattern or the rule for every node of the tree.

(Rulel) r:length'(py : nil,ps:e) — 1" : 0;r > 1/

)
(Rule2) 7 :length’(py : cons(n:e,py: @), py) — ' :s(0);r >
)

(Rule3) [r:length'(py : cons(n : e ,ps:e) ps3:e)|py#p3] — 1 :s(qg:e)q:

length/(p2, p3);r > 1’

Readers familiar with classical definitional trees [I] should notice the introduc-
tion of a new kind of nodes called share.branch. In the context of term-graph
rewriting, sharing of data-structures plays an important role which cannot be
handled easily in the framework of term (tree) rewriting. The addition of the
nodes share.branch still ensures the property of non overlapping of the patterns
situated at the leaves of a definitional tree. We can easily prove the following
statement.

r:length'(p1: e, p2 : o)

— T

Rulel length'(p1 : cons(n : e,p3 : @), pa: e)

R

\4
Rule2 Rule3

Fig. 5. A definitional tree of operation length’
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Proposition 1. Let T be a definitional tree of a defined operation f. Let [ly |
c1] — 71 and [la | ea] — ro be two different rules of T. Then, the left-hand sides
[l2 | e2] and [ly | ¢1] do not overlap. Ie., there exist no term-graph g, and matchers
hy: 1y — g and hy : lo — g which fulfil respectively constraints ¢1 and co.

Hereafter, we define the rewrite strategy @ induced by definitional trees. We
start by the following technical definition of constructor paths.

Definition 10 (Constructor Path). We will say that a node p is reachable
from a node ng in a term-graph g through a constructor path iff there exists a
path in g, say ng ~g N1 ~>g ... ~>g Nk ~>g p such that, for all i € 0.k, L4(n;)
is a constructor symbol (€ C).

Definition 11 (A term-graph rewrite strategy). Let SP = (¥, R) be a
tGRS such that X is constructor-based and the rules of every defined operation
are stored in a definitional tree. Let g™ be a rooted term-graph. Let p be a reach-
able node from the root n through a constructor path in g" such that p is labeled
by a defined operation f and let Ty be a definitional tree of f. @ is the partial
function defined by P(g"™) = ¢(g?, 7).

Below, we define the partial function . Let g™ be a rooted term-graph such
that Lgn(n) € D (i.e. the root n is labeled with a defined operation) and T a
pdt such that pattern(T) < g™. When it is defined, the value p(g"™,T) is a pair
(p, R) such that the term-graph g™ can be reduced at node p using the rule R.
More precisely, (g™, 7T) is defined as follows:

(n,[n" | C'] = ") if T = rule([r | C] — ) and
[7" | C'] — ' is a variant of [v | C] — r ;

e(g", Ti) if T = share.branch([r | C|,T1,T2) for
the unique @ such that pattern(7Z;) < g" and i € 1..2;
w(g"™, T7) if T = position.branch([x | C],0,T1,...,T}) for
(", T)= the unique i such that pattern(7Z;) < g" and i € 1..k;
w9 L= (p, R) if T = position.branch([r | C|,0,T1,...,Ts),

[7 | C] matches g™ at the root n by
homomorphism h : m — g,

h(o) is labeled with a defined operation f (in g),
T’ is a definitional tree of f and

e(g"?,T") = (p, R).

Example 6. We illustrate the use of the strategy @. We consider again the oper-
ations and the rules given in Example [l

(R1) n: f(p:0,q:0¢) >n>p
(R2) n:g(p:e,q:succ(m:e)) —w:0;n>w
(R3) n:h(p:e)— q:succ(m:h(p));n>q

First, we provide a definitional tree for each operation.

T; = position.branch(n : f(p: e,q:e),p,rule(R1))
7, = position.branch(n : g(p : e,q : @), q,rule(R2))
T, = rule(R3)
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The following derivation given in Example [ is developed by the strategy &.

GY —e Gy —=c Gy =3 G
One can easily verify the following equalities:

P(GY) = (e,R3)
B(GE) = (c,R2)
B(GE) = (b,R1)

The aim of the definition of the strategy @ is to compute needed nodes to be con-
tracted during the transformation of a term-graph. We define below the notions
of needed nodes and outermost nodes in the framework of term-graph rewriting.

Definition 12 (needed node, outermost redex). Let SP = (X, R) be a
tGRS such that X' is constructor-based. Let g7 and g3* be two term-graphs and
B =g} 5 g5 a rewrite derivation. A node q labeled with a defined operation in
g1 and reachable from the root n is a residual node by B if ¢ remains reachable
from the root m in g3*. Then, we call descendant of g the rooted term-graph g3.
A node q in g is needed iff in every rewrite derivation from g to a constructor
normal form, a descendant of g7 is rewritten at its root q. A node q labeled with
a defined operation in g™ is an outermost node of g™ iff ¢ = n or q is reachable
from n through a constructor path. A redex u rooted by q in g™ is an outermost
redex iff ¢ = n or q is reachable from n through a path po ~+gn p1 ~>gn ... ~>gn Dy
such that po =n, pr = q and gP* is not a redex for all i € 0..(k — 1).

Unlike the case of terms, we show in the following proposition that, in general,
the strategy @ does not compute needed nodes when it is applied on term-
graphs. We will give later in Definition [[3] sufficient conditions which ensure the
neededness of the nodes computed by the strategy &.

Proposition 2. Let SP = (¥, R) be a tGRS such that X is constructor-based
and the rules of every defined operation are stored in a definitional tree. Let g"
be a rooted term-graph. Then,

1. the computation of ¢(g™) may be infinite.
2. if ¢(¢g"™) = (p, R), the node p is not needed in general.
3. if ¢(g™) is not defined, g can still have a constructor normal form.

Proof. The proof is given by counter examples. Let us consider the following
tGRS which satisfies the conditions of the proposition.

rifip:0) = r>p
r: fi(p: succ(p’ : @) —r>p
r:hi(p:0,q: succ(n:e)) —qg>p
rigi(p:0)—r>p
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1. Let E™ be the term-graph n : fi(m : fi(n)). Then, by definition of the
strategy ¢, ¢(E™) = p(E", Ty, ), for some definitional tree, 7y,, of fi. By
definition of ¢ and from the patterns of the rules defining fi, one can easily
verify that ¢(E™) does not halt.

2. Let G™ = n : succ(r : suce(p : f1(q : suce(s : hi(u: 0,7))))). We can easily
verify that ¢(G™) = (p,r1 : fi(p1 : succ(p] : ®)) — r1 > p1). However, the
node p is not needed in G™ since one may obtain the desired normal form
n : succ(u : 0) after one rewrite step performed at node s.

3. Let us consider the graph H™ = n : succ(r : succ(p : g1(q : suce(s : hy(u :
0,7))))). Then, ¢p(H™) = @(HP,7,,) is not defined for any definitional tree
7,4, . However, if we rewrite H" at node s we get a constructor normal form
H} =n: succ(u: 0).

To overcome the issues pointed by Proposition 2 we propose below sufficient
syntactic conditions over rewrite rules.

Definition 13 (inductively sequential tGRS). Let SP = (X, R) be a tGRS.
SP is called inductively sequential tGRS iff (i) the signature X is constructor-
based, (ii) the rules which define every defined operation are stored in a defini-
tional tree and (i) the nodes which can be subject to local or global redirections
are the roots of the left-hand sides of the rules. That is to say, for all rules
[ | C] — r in R, for all global (respectively, local) redirections of the form
p > q (respectively, p >; q for some i), occurring in the right-hand side r, we
have p = Root .

Ezxample 7. The rewrite systems given in Example [§] and Example @ are all
inductively sequential but the one which defines the operation reverse.

The following proposition summarizes the main properties of ¢ in presence of
inductively sequential term-graph rewrite systems.

Proposition 3. Let SP = (X, R) be an inductively sequential tGRS, f a defined
operation, Ty a definitional tree of f, and g" a rooted term-graph whose root is
labeled with f (i.e. Lgn(n) = f). If 0(g",T¢) = (p, R) , then (i) in every rewrite
derivation from g™ to a constructor-rooted term-graph, a descendant of gP is
rewritten at the root p, in one or more steps, into a constructor-rooted term-
graph ; (ii) gP is a redex of g matched by the left-hand side of R ; (iii) gP is an
outermost redex of g"™. (i) If (g™, T) is not defined, then g™ cannot be rewritten
into a constructor-rooted term-graph.

Theorem 1. Let SP = (X, R) be an inductively sequential tGRS, and g" a
rooted term-graph. If ®(g) = (p, R), then gP is an outermost needed redex of g"
and g™ can be rewritten at node p with rule R. If ®(g) is not defined, then g"
cannot be rewritten into a constructor term-graph.
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4 Confluence

In this section, we consider the property of confluence which could be of great
interest for deterministic computations. Ensuring confluence in presence of term-
graph rewrite systems is not an easy task (see e.g., [IT]). For example, a rewrite
system as simple as the two following rules f(z) — z and g(x) — x is not
confluent. Indeed, the term-graph n : f(m : g(n)) can be reduced to two dif-
ferent term-graphs n : f(n) and m : g(m). The two last term-graphs cannot be
reduced to a common term-graph. In [9/T0], a subclass of circular term-graphs,
called admissible term-graphs, has been introduced. It has been shown that, for
a large class of term-graph rewrite systems, the rewrite relation induced over
admissible term-graphs is confluent. In this section, we generalise that result to
the admissible inductively sequential tGRSs.

Definition 14 (admissible rooted term-graph). [910] A rooted term-graph
g™ is admissible iff for all nodes m, labeled by a defined operation (i.e., Lon(m) €

D), m is not reachable from itself (i.e., m does not belong to a cycle m b m).

Definition 15 (admissible inductively sequential tGRS). Let SP=(X,R)
be an inductively sequential tGRS. SP is called admissible iff for all rules [m |
C] — rin R the following conditions are satisfied

— for all global (respectively, local) redirections of the form p > q (respectively,
p > q for some i), occurring in the right-hand side r, we have p = Root,
and q # Root .

— for all actions of the form «: f(B1,...,0n), for alli € 1.n, B; # Root,

— the set of actions of the form « : f(B1,...,0n), appearing in r, do not
construct a cycle consisting only of newly introduced nodes in r and including
a node labeled with a defined operation. If we denote by ~», the reachability
over the new nodes introduced in r, this condition could be specified as : for
all nodes, o, introduced in r and labeled by a defined operation, o >, o

— Constraint C includes disequations of the form p # q where p and q are
labeled by constructor symbols.

Example 8. All the previous inductively sequential systems are admissible or can
be modified to fulfil the required conditions. Below we provide an admissible in-
ductively sequential tGRS which defines equality over naturals.

pieq(n:en) — q:true;p>>q

[p:eqn:0,m:0)|n#m|— q:true;p>>q

[p:eq(n: succ(n' :e),m: succ(m’:e))|n#m]—p>1n;p>sm
p:eq(n:suce(n' :e),m:0)— q: false;p > q

p:eq(n:0,m: succ(m’ :e)) — q: false;p>>q
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The following proposition states that the class of admissible term-graphs is closed
under the rewrite relation induced by an admissible inductively sequential tGRS.

Proposition 4. Let SP = (¥, R) be an admissible inductively sequential tGRS
and g™ an admissible rooted term-graph. If g" rewrites to g™ via a rewrite rule
i R, then g™ is also an admissible rooted term-graph.

Definition 16 (Confluence). Let SP = (X, R) be an admissible inductively
sequential tGRS. We say that the rewriting relation — is confluent w.r.t the class
of admissible term-graphs zﬁ for all rooted admissible term-graphs g7, g2 , g3
and g4 ™" such that 91 and gy are identical up to renaming of nodes (91 ~ gy ),

T g5 and 92' — g)", there exist two admissible graphs g8 and gg such that
95" = g8, g§" = g¢ and g§ ~ ¢ .

We state below a new confluence result regarding the class of admissible induc-
tively sequential tGRS. The reader familiar with the confluence property may
notice that systems in this class are not always confluent modulo bisimilarity
(two term-graphs are said bisimilar iff they represent the same rational term).
For instance the application of the operation length, as defined in Example [3B]
to two bisimilar and non isomorphic lists, should yield different values.

Theorem 1. Let SP = (¥, R) be an admissible inductively sequential tGRS.
Then the rewriting relation — is confluent w.r.t the class of admissible term-
graphs.

The proof of Theorem [l is obtained by classical induction on the length of the
considered rewrite derivations and leans basically on the following key result.

Lemma 1. Let SP = (X, R) be an admissible inductively sequential tGRS and
g, g and g5 be three admissible term-graphs. If g" — g7 and g” — g9, then
there exist two graphs g5 and g3 such that g7 5 g5, 95 5 g4 and g5 and g are
equal up to renaming of nodes (g5 ~ gi). The notation g = ¢’ means that ¢ is
either g (zero rewrite step) or it is obtained from g after one rewrite step.

5 Conclusion

Definitional trees [I] give rise to efficient rewrite and narrowing strategies. In
this paper we investigated ways to use Definitional trees with the aim to pro-
pose new efficient strategies for term-graph rewriting. We succeeded to show
the computation of needed redexes in the particular class of inductively sequen-
tial tGRSs. We gave also counter-examples illustrating some negative results.
These results give an idea about the limits of the use of Definitional trees in
the context of term-graph rewriting. On the other hand, we proposed a new
class of admissible term-graph rewrite systems for which the rewrite relation
is confluent with respect to admissible term-graphs and for which Definitional
trees still behave nicely. The presented results open some directions of work. In
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[11], a general narrowing procedure has been proposed. The class of inductively
sequential tGRSs seem to be a good candidate to develop an efficient narrowing
strategy for term-graphs. Abstraction techniques has been successfully used in
the context of term rewrite systems (see, e.g., [7U15]). Extensions of abstraction
methods to term-graph rewrite systems worth also to be investigated.
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Abstract. Mobile agents are a well-known paradigm for the design and
implementation of distributed systems. However, whilst their popular-
ity continues to grow, a uniform theory of mobile agent systems is not
yet sufficiently elaborated, in comparison with classical models of dis-
tributed computation. In this paper we show how to use mobile agents
as an alternative model for implementing distributed local computation
rules. In doing so, we approach a general and unified framework for local
computations which is consistent with the classical theory of distributed
computations based on graph relabeling systems.
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1 Introduction

Models of local computations, described by graph relabeling systems provide a
useful theoretical framework to specify and reason about various aspects of dis-
tributed computation with distributed algorithms [QIT0J2]. Assuming that the
reader is already familiar with this theoretical background, we will only briefly re-
capitulate the basic characteristics and features of modeling distributed systems
by local computations and graph relabeling systems. This well-known paradigm
will be our starting point from where we shall proceed towards a more recent
paradigm of distributed computation by mobile agents.

Our aim is to demonstrate that all basic building blocks of the graph relabel-
ing paradigm can be implemented by the activities of mobile agents, leading to
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the hypothesis that mobile agents are as powerful as classical distributed sys-
tems, i.e., message passing systems [4]. In practice, the use of mobile agents for
the implementation of distributed algorithms can have advantages over classical
implementations, because roaming agents can better cope with temporary net-
work failures and also consume less computational resources, in comparison with
the global network activities induced by classical implementations of distributed
algorithms. In addition, mobile agents allow to bring a new level of abstraction
in distributed computing. For instance, in the message passing model, the nodes
represent both the topology of the network and the autonomous computation en-
tities. In opposite, in the mobile agent model, the nodes define only the topology
of the network, while the agents define the computation entities of the network.

The consideration (description, reconstruction) of agent systems in terms of
graph transformation systems is not a new idea; take for example [§] as an early
contribution to this field of study. In [§], however, graph transformation tech-
niques are used to model internal properties and/or actions of agents, whereas
the focus of our paper is on their external properties, mainly motion between
network places, motivated by our intention to demonstrate the possibility of ex-
pressing (respectively implementing) classical distributed algorithms in terms of
mobile agent systems. To this end, graph transformation systems can be regarded
as the bridge formalism between the domain of classical distributed algorithms
and the domain of mobile agent systems.

Graph Relabeling Systems: Processor networks, which are the substrate of
distributed computation, are represented by labeled graphs G = (V, E, L, \) with
a set of labels L and a (possibly partial) labeling function A : (VW E) — L
that attaches labels to vertices (nodes) and/or edges (arcs) of the network graph.
The labels, which may lexically appear arbitrarily complex, are used to model
the internal states of the network components during the run of a distributed
algorithm on the network. A final label configuration represents the result of a
terminated algorithm. Thereby, the models must be designed in such a way that
three locality conditions are always fulfilled:

cl: Relabeling does not modify the underlying graph structure (from a topolog-
ical point of view);

c2: Each step can only relabel a limited, connected sub graph (fixed in size);

c3: The applicability of a relabeling step in a “neighborhood” is constrained only
by the local conditions within such a neighborhood, not by the global state
of the entire network.

Distributed algorithms described in such a framework are usually composed of
basic units which correspond to certain types of relabeling rules. These various
rule types, which are classified and explained in [5], comprise constructs such as:
single node relabeling depending on only one neighbor, two neighbor relabeling,
single node relabeling depending on labels of all neighbors (star relabeling),
single node relabeling in the center of a ball of radius 2, relabeling of an entire
ball of radius k£ > 1.
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R 0 N R 1 A
Ry: ® ® > @« )
A 0 N A 1 A
Rs: ® ® > @« )

Fig. 1. Rules for a distributed construction of a rooted spanning tree

However, not every rule type is suitable for composing (describing) a partic-
ular distributed algorithm. For example, whereas the distributed computation
of a spanning tree across the underlying network can well be described in terms
of the most simple rule type (relabeling one node depending on only one neigh-
bor), others, more complicated distributed algorithms can only be described in
terms of more complicated types of relabeling rules [I1]. Anyway, a relabeling
system gives us a uniform and unified methodology for describing and proving
distributed algorithms. For example, Figure[Il shows a simple relabeling rule sys-
tem, consisting of two rules only, by means of which a spanning tree of a graph
can be computed in a distributed and self-organizing fashion(].

Mobile Agent Systems: One can ask how to turn a set of relabeling rules into
an executable distributed algorithm — in other words, how to implement a dis-
tributed algorithm described with a relabeling system into a practical distributed
setting. Because we can find many types of distributed systems relying on the
type of communication (e.g., messages, shared memory), the type of synchrony
(e.g., synchronous, asynchronous), and the type of computation entities (e.g.,
processors, mobile agents), many solutions are possible. For instance, some algo-
rithms are known for the case of classical message passing systems [I3IT4UT2l[7].
In this paper we are interested in a uniform mobile agent solution.

When a distributed algorithm is to be implemented by means of mobile agents,
a variety of issues must be considered. Amongst those, there are some especially
important considerations concerning the nature of synchronization, the notion of
agent, as well as the organization of agent processing whenever an agent arrived
at a particular node in the network.

In order to perform local relabeling classically, some type of synchronization is
needed for a short period of time between the involved nodes. In the usual imple-
mentation of a local relabeling step [3], messages are sent between the involved
nodes such that, depending on the information contents of those messages, syn-
chronization can be achieved. In a pure mobile agent system, however, there are
no messages; there are only agents moving from node to nodel Consequently,
the notion of “synchronization” looses its traditional meaning: In a classical dis-
tributed system, all nodes are active during the same time. They might not have

! In the example of Fig. [I] it is implicitly assumed that at the beginning there exists a
unique node with label R (root) in the network graph, and all the other nodes have
label N.

2 Thus the agent itself “is” a message.
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a common clock and might follow their own local speed of pace, but no node is
supposed to fall asleep until the termination of the algorithm. In a mobile agent
system, on the contrary, a network node is asleep as long as no agent is locally
present: consequently, the notion of “synchrony” in a mobile agent system can
only be circumscribed in terms of particular patterns of agent moves between
two quasi-synchronized neighbor nodes.

Remainder of the Paper: In the remainder of the paper we present some
mobile agent implementations of relabeling systems. In Section ] we describe
two implementations of two basic classes of local relabeling rules called type
LCO and LC1. In Section Bl we describe a general methodology (or framework)
for implementing any class of relabeling rules.

2 Basic Agent Operations

As mentioned in the Introduction, there are several classes of local relabeling
rules, according to the various types of neighborhoods in which those rules can
be anchored (e.g. edge-shaped neighborhood, star-shaped neighborhood, ball-
shaped neighborhood, and the like). In the following sub-sections we present
novel solutions for rules of type LCO and LC1 in terms of mobile agents.

2.1 Blocking-Free LCO

The LCO rule (which is well-known to be suitable for the distributed computation
of spanning trees) looks like this:

T N T T
LCO rule: ° o - ° -0

It replaces Nonterminal nodes by Terminal nodes, and increases thus its own
applicability by every actual application. One should note that an initial labeling
of the graph that will allow the application of such a rule must have at least one
node with a type 7 label.

In the following we present a simple implementation which does not use any
blocking in the agent code at all. Instead, mutual exclusion will be provided by
the operating systems of the nodes themselves which provides internal waiting
FIFO queues to cope with the arrival of more than one agent at the same node
at the same time. Thus, the here presented approach makes only minimalist
requirements as far as the internal structure (code) of agents are concerned.

Preliminaries, Part A: Agents

— All LCO agents are assumed to be identical which means that (a) they carry
the same program code and (b) they do not carry any static unique ID that
could distinguish them from each other once and for all.
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— In this model an agent can not continue the execution of the program code
after migrating from one node v to another node v’. Thus they must always
start with their very first line of program code again, whenever they arrive
at another processing place.

— However, an agent needs one bit of persistent memory C in order to remember
the context from where he came. Because of the specification of the LCO
Rule, namely {7—N} = {7 — T}, an agent must have visited a 7
node before he may change an A node to 7. Coming from another A/ node
the agent may not update an A node, because otherwise the agent would
implement a wrong rule, namely {N—N} = {N — T}, for which there
is no specification. Without any kind of persistent memory, which the agent
can carry along in his ‘rucksack’ while traveling from node to node, the agent
could not remember the type of node from where he came and could thus
not correctly implement LCOH. At agent creation time we set C' := false and
update the value to true as soon as the agent has found its very first LCO
context node of type 7.

These types of agents are deliberately specified minimalistically to be the most
primitive and ‘non-intelligent” agents we can think of; yet these primitive enti-
ties will be sufficient to implement the above-mentioned LCO rule, if only the
underlying network environment provides the following features:

Preliminaries, Part B: Environment

— According to the LCO rule of above, a node possesses one out of two distin-
guishable types T: These are 7T, respectively V.

— A node shall also be equipped with a waiting queue for incoming agents.
Because of the system being fully asynchronous, the waiting time of an agent
in a node’s waiting queue is completely arbitrary; an agent could vanish in
a queue for several hours as well as for just a few micro seconds.

— We assume that an agent gets exclusive access to the processor of a node from
the beginning to the end of its agent code, while other agents are waiting
in the queue until that agent has finished its task. There is no round robin
(or any other pseudo-simultaneous) processor sharing amongst a multitude
of agents sitting in the same node at the same time, which means that two
agents can never disturb each other while sitting in the same network node
at the same time.

— We assume that a node maintains locally unique channel names (port names)
to each of its adjacent edges e;.

— We assume that a node will be able to inform an incoming agent ay about
local identity of the channel e; through which that agent entered that node.
This information will be stored in the operating system of the node even
while the according agent is waiting in the node’s internal queue.

3 Technically speaking, the agent must modify its own program code —like in the ‘core
war’ game— when modifying its own persistent memory, for the agent consists of
nothing else but program code.
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— After an LCO rule {7—N} = {7 — T} has been successfully applied to
a node v, i.e. another branch (—) of a spanning tree has been constructed
and v has become part of it by changing its type from N to 7, v will
internally mark the according channel port. A link memory L shall store
this information. Note that a node can have at most one incoming edge in
a spanning tree, such that L is either empty or it carries the name of one of
the ports of its node.

Algorithm (Pseudo-Code)

Based on the assumptions of above, the algorithm of Fig. 2 (the code of which is
carried by the mobile agents), implements relabeling rules of type LCO. Deadlock-
Freeness of the procedure is guaranteed because no kinds of blocking techniques
(semaphores, etc.) are used at all. Mutual Ezclusion of agents in one node is
guaranteed by the underlying operating system of that node which is assumed
to provide a FIFO queue for incoming agents. Correctness of the spanning tree
construction is guaranteed by the fact that any node can have at most one
incoming link, and any agent can create at most one such links at the same
time, and at most one agent can be active in the same node at the same time.
Also note that the agent’s memory C is actually a monotonous function: As
soon as the agent has found his first context node of type 7, C will switch

PROCEDURE AGENT|C] ............ //C is persistent during migration!
BEGIN

ARRIVE @ node;

BEGIN ATOMIC SECTION

if( T(node) == ‘T ) ...coiiiin... // found potential LCO rule context
C := true;

p := getAnyPort(node); ..................L // try to find node type ‘N’
LEAVE(p);

if( T(node) == ‘AN? AND C == true ) ............. // application possible
i:= getMyIncomingPort(node);

L(node) := i;

T(node) := T oo // update accomplished
p := getAnyPort(node); ....... ... .ol // try to find further work
LEAVE(p);

if( T(node) == ‘AN? AND C ==false ) ............. // not seen 7 -context
p := getAnyPort(node); ............ ... // try to find node type * 77
LEAVE(p);

END ATOMIC SECTION
END

Fig. 2. LCO implementation: code for an agent
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to true and will never be switched back to false again, for any node visited
immediately afterward is either a 7 too, or will switch from N to 7 in the
course of the operation. This means that our agent implementation of above
is almost state-less, and can indeed be made completely state-less if it can be
externally guaranteed that the starting place of an agent (at creation time) is a
node which has type 7.

2.2 LC1 with Two Different Types of Agents

LC1 is the star rule type that updates a single node in relation to all its neighbors.
In other words, LC1 works like a generalized cellular automaton rule in the sense
of [6]. We can thus sketch the update type of LC1 as:

N X T X
LCI rule: O { ® - of ®

whereby X’ stands for any node label in the neighborhood which will remain the
same; only the center of the star is updated when the neighborhood condition
is fulfilled. In the following implementation of this rule we will use a blocking
technique, such that two agents who wish to update neighbor nodes cannot
interfere with each other. The according agents of type Star will be used to
implement the core of LCI.

However, whenever blocking is allowed, the resulting system is deadlock-prone.
To break the symmetry of a mutual-block situation, an agent of type “Lamport”
will crawl through the web and assign priority labels wherever a mutual-block
situation is detected. Consequently an area with a higher priority can be served
first by the agents of type Star. In the following we first present the code of the
Star agents, thereafter the code of the “Lamport” agent

Preliminaries. Without loss of generality (only for the sake of intuitive de-
scription) we assume that a star center is connected by with its neighbor nodes
by means of one hyper edge. Given a node set V, a hyper edge is a structure
h = (v,V), whereby v € ¥V and V C V. Thus an agent shall be able to use
the information h(v) € V (and for any v' € V, h~(v') = v) for the purpose of
traveling between a center of a star and its fringes (orientation). A node shall
be endowed with a rich internal state, made up of the following components:

— p € Now{—1} is a priority flag which will be used to solve conflicts between
competing neighbor activities. (The value —1 means that this node has not
yet been ranked in any priority order.)

— m is the node’s main label, which can be updated as a result of any LC1
rule application.

— h is the node’s hyper edge information which is used by a Star agent to
navigate within a star shaped neighborhood.

4 The idea is inspired by Lamports well-known “Bakery” protocol.
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— M = [mq,...,my] is a field with a buffer m; for every neighbor node v; =
h(v) € V. According to rule LCI the center node can be updated as soon as
information from all its neighbors are collected, and M will be used exactly
for this purpose.

Similar to the previous example (LCO), a Star agent shall possess a small, persis-
tent runtime environment which the agent can carry from node to node during
migration. The main components of this runtime environment are

— A number memory (‘my-prio’, init.:nil), such that priority considerations can
be made;

AG DEF PERSISTENT VAR:
my-label(init:nil), my-prio(init:nil),
my-memo(init:nil), my-counter(init:0) ;

BEGIN

if IF (my-count = 0) AND (host-prio = —1) then
host-prio := 0 ... // mark center active
my-prio := host-prio ;

| my-count :=1; ... .. .. ... // prepare for work

if (my-count = 1) then
my-label := host-hyp ; ................oiL. // remember hyper edge
my-prio := host-prio ;
MY-COUN 1= 2 5 ottt // prepare for fringe

DO select neighbor N with host-M[N]| = nil ;
DO move and enqueue into [my-label — NJ ;

if (my-count = 2) AND ((host-prio = —1) OR (my-prio < host-prio)) then

my-memo := host-m ; ....... ... i // collect info
MY-COUNL 1= 3 5 ..\ttt // prepare for center
| DO move and enqueue into [my-label ™| ; ............... ... // go back
if (my-count = 2) AND (my-prio > host-prio) then
my-memo :=nil ; ... // fringe is blocked
MY-COUNE 1= 3 5 .ottt ittt // prepare for center
| DO move and enqueue into [my-label 7| ; ............... ... .. // go back
if (my-count = 3) then
DO update host-M «— my-memo ; .........c..ooveieinenena... // bring info

| if IF (host-M contains nil) then my-count := 1 else my-count := 4

if (my-count = 4) then

// all neighbors checked

DO update hostm =e; ..................... // rule application in center
ROSE-PIio t= — 1 5 o\ttt e e // job done
my-count := 0 ;

| DO move away to another job ;

if (otherwise) then

// nothing to do here my-count := 0 ;

| DO move away to another job ;

Fig. 3. LC1 implementation: code for a Star agent
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if (host-prio = 0) then
// found node in critical section
host-prio := my-number ; .......... ... ... .. // allocate priority
my-number := my-number +1 ;
DO move away to another job ;

Fig. 4. LC1 implementation: code for the Lamport agent

— A hyper edge memory, (‘my-label’;, init.:nil) such that the agent has orien-
tation within a star-shaped neighborhood of nodes;

— A work-mode flag (‘my-counter’, init.:0) such that the agent can determine
whether he is in the center of a star, or at the fringe of a star, or in search
for another job;

— A memory (‘my-memo’, init.:nil) for reading a node’s label and transporting
this information back into the center of a star.

Agent Star (Pseudo-Code). Based on the preliminaries of above, the algo-
rithm of Fig.Blfor the Star agent should be more or less self-explanatory — note,
however, that the agent code is started from the very first line of the program
whenever the agent arrives at a new node, (thus: no persistent program pointer
and consequently no code-continuation in the process of migration):

Basically the algorithm says: When you have collected information from all
the neighbors then you must apply the LC1 rule. However, if a neighbor is
prior, then you cannot collect its information and you must return to the center
undone; and try again later. The priority labels are allocated by the supportive
Lamport agent which is described in the following.

Agent “Lamport” (Pseudo-Code). This agent is very simple, see Fig. [ for
the detailed description. However, to ensure uniqueness of the priority numbers,
we stipulate that there be only one instance of “Lamport” in the network. Because
the code of this agent is only short, we can assume that it will work sufficiently
fast to do his job across the network. Whenever the Lamport agent finds a critical
node (with number 0), it will allocate a unique number n > 0 to it. This is also
the reason why the Star agent has to update his own priority memory whenever
he comes back into the center — because the Lamport agent could have visited
the center in the meantime while the Star agent was in the fringe.

Because of the uniqueness of the priority numbers allocated by the Lamport
agent, the Star agents can never deadlock, though they can temporarily protect
their current neighborhoods against other Star agents roaming in the network.

3 A General Mobile Agent Framework for Relabeling
Systems

After having presented two particular examples (LCO, LC1) in the previous sec-
tion, we are now aiming for a constructive and general method of implementing
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any local graph relabeling system by means of mobile agents. In doing so, we ap-
proach a general and unified framework for local computations which is consistent
with the classical theory of local computation based on graph relabeling systems.

In the rest of the paper, we consider a k-locally generated relabeling system R.
We recall that R is called k-locally generated if any relabeling rule of R is entirely
defined by the precondition and the relabeling of a generic ball of radius at most
k. Intuitively speaking, only the labels of nodes and edges in a ball of radius k are
changed. One application of this type of relabeling systems is for studying graph
reduction rules and graph recognizers in a distributed and static environment.
For instance, in [I5] it is shows how to encode handy reduction rules envolving
vertex (edge) deletion (addition) in a distributed environement by mean of k-
locally generated relabeling systems.

Before going into the details, let us define the model we will consider. We will as-
sume that each node is equipped with a whiteboard where agents can read and write
information under mutual exclusion. The label of a node is stored in its whiteboard.
The whiteboard W B(v) of a node v contains also other variables allowing agents to
exchange information and to communicate together (e.g., to decide whether anode
may be relabeled). More precisely, for every node v we will denote by W B(v).c the
couple (X, 7) with X alabel from set {M, Locked }, and i is an integer value. In our
general approach, we will assume that every agent has a unique identifier. In fact,
if the agents (and the network) are anonymous and if k > 2, there exists no deter-
ministic distributed algorithm in the asynchronous mobile agent model allowing to
execute a k-locally generated relabeling system for any graph. This claim can be
proved using the equivalence result of [4]. Roughly speaking, the equivalence result
there says that mobile agents and message passing systems have the same power
from a computability point of view). Since it is well known that it is impossible to
implement a k-locally generated relabeling system for any graph using messages
(seee.g., [TII3]), our claim is straightforward. For simplicity and clarity, we assume
that the identifier of agent A; (withi € {1,--- ,n})isi.

Assume that we have n agents which have been scattered over the entire
network. Our goal is to make the agents apply the relabeling rules given by R
in a distributed way. The examples of the previous section have shown that the
major challenge consists in making the agents execute the rules in an independent
and concurrent way, that is, if an agent is being executing some rule in some
region, then no other agent should execute a rule simultaneously on the same
region — otherwise the relabeling may be wrong or ill-defined. We first present
an algorithm for the case there is exactly one agent in the network, thereafter
we extend the solution for the more general case of many agents (n > 1).

3.1 Single Agent Implementation

For now we assume that we have only one agent in the network to implement a
distributed algorithm specified by a local graph relabeling system. Two problems
must be solved in this scenario:

5 In other words, what can be computed by message passing can also be computed by
mobile agents and vice versa.
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— How shall the agent traverse the entire network without omitting any node?
— How does the agent recognize the neighborhood of a node in order to apply
a relabeling rule on this node in that neighborhood?

The traveling problem can be solved by means of a spanning tree. Thus, first
we make the agent construct a rooted spanning tree T' of the entire network.
Many spanning tree algorithms are described in the literature, and any kind
of spanning tree will do (see also the next section for a Depth First Search
(DFS) tree algorithm). Now, the agent can use T as a map for traveling across
the network. For instance, from the root of T', the agent could perform a DFS-
traversal of T. Whenever the agents visit a new node, he temporarily interrupts
his DFS-traversal in order to apply a local relabeling rule. Thereafter the agent
continues the DFS-traversal to visit another node in T'. Once the entire network
is traversed the agent will start a new DFS-traversal, and so on, until no further
relabeling rules are applicable. This method ensures that all the nodes of the
graph will be visited at some time by the agent, such that node starvation is
impossible.

Now we need to describe how the agent can execute a graph relabeling rule
after arrival at some node v. The idea is to make the agent “learn” the k-
neighborhood of v in order to be able to check if a relabeling rule can be applied.
In order to learn the node’s k-neighborhood, the agent first constructs a Breadth
First Spanning (BFS) tree Tg(,,1) of the ball B(v, k) rooted at v (for instance
this can be done in a layered fashion). Then the agent collects the entire topol-
ogy of B(v, k) by traversing the neighborhood tree T'’z(, ). In case the network
nodes have unique identifiers the learning of a node’s k-neighborhood is quite
straightforward. In case that no such unique node identifiers are available it is
also not too difficult to let the agent himself create such identifiers for the visited
nodes (e.g., when constructing the initial spanning tree 7"). Having “learned” the
topology of B(v, k), and having noticed that some relabeling rule r is applicable
in the context of B(v, k), the agent visits B(v, k) again (using the neighborhood
tree Tp(y,x)) and attaches new labels according to rule r.

3.2 Multiple Agent Implementation

In the remainder of this section, we extend the previous single agent approach
and describe our generic framework for implementing a k-locally generated re-
labeling system for any integers k,n > 1.

Initializing and Traveling the Network. The key idea of our approach is
to partition the graph G into a set of n regions (G;)icq1,...,n} and to assign a
region G; to every agent A;. Each agent then applies the applicable relabeling
rules in its own region, independent of other agents. Thereby we have to consider
how the regions are assigned to the agents, and how the application of rules is
managed at the borderline between two regions.

Without loss of generality, we can assume that a node contains no more than one
agent at the beginning. In fact, if this assumption is not satisfied then the agents



110 B. Derbel, M. Mosbah, and S. Gruner

mark the initial departure node as root of Tg;,;

find a new un-explored node neighboring the current node;

if a new un-explored node v is found then

mark the new explored node v as part of sub-graph G;;

update the rooted tree T¢, ;

continue the exploration (DFS-traversal) from node v (go to line 2);
else

move back to the previous parent node u using the rooted tree T, ;

if node u is the root and all outgoing edges of u were explored then
stop the exploration;

Tg, is ready;
else
| continue the exploration from node u (go to line 2);

Fig. 5. Algorithm INITNETWORK for constructing a region G;: high level code for agent
number ¢

with the lowest identifiers travel the network searching for a new departure node.
If no free node is found (which can be detected by performing a DFS-traversal of
the network), the agent searching for a departure node vanishes (it dies).

At the beginning, each agent executes algorithm of Fig. Bl This algorithm is
an adaptation of the classical DFS-tree algorithm for a mobile agent system. For
simplicity, we have omitted the details showing how an agent marks a node or
an edge (which is straightforward using the above-mentioned whiteboards of the
nodes). After termination, every agent has computed a spanning tree denoted
by T¢,. In other words, the region G; is defined to be the subgraph of G induced
by the tree constructed by agent A;.

Note that it might possibly happen that an agent fails to compute a tree.
In this case, the agent should vanish and the actual number of agents in the
network is decreased. Moreover, the case of a unique agent corresponds to the
case where there is only one region (the whole graph). However, the algorithm
INITNETWORK of Figure [l allows to construct a spanning forest of G even when
the agents do not have unique identifiers which could be of independent interest.
Note that algorithm INITAGENT can be easily encoded in a high level way using
rules type LCO or LC1.

Executing the local relabeling. Now that the regions (G;)ieq1,...,n) are con-
structed, every agent is responsible for executing relabeling rules in its own re-
gion. In the interior of a region, the rules could be executed like specified by our
single agent implementation. However, some conflicts may occur at the border-
line between two adjacent regions. The main purpose of the following paragraphs
is to show how to deal with these conflicts. First, each agent A; constructs a BFS-
spanning tree Tz, (,,x) of B(v, k) for each node v € G; (note that T, (, ) may
contain nodes in another region G; # G;). Then, each agent A; traverses G; in
a DFS fashion using T¢;,. When agent A; is at a node v € G, it tries to apply a
rule using the following four phase strategy:
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L. In the first phase, agent A; traverses Tz, (,,1) and collects the labels of B(v, k)
in order to check if a rule can be applied. If no rule can be applied, then A;
continues the traversal of T¢,. Otherwise, A; goes to the second step.

2. In the second phase, agent A; traverses T, (, ) and tries to mark the
W B(w).c field of nodes w € B(v, k) using an extra label (M,i) as following:

— Ifanode w € B(v, k) is marked with label (locked,j) for any j # i, then
agent A; waits until node w is unlocked by agent A; (see next phase).
— Ifanode w € B(v, k) is already marked (M,j) by another agent A; # A;,
then there are two cases:
e If i < j then A; unmarks all the nodes he has already marked and
continues the traversal of T¢, (go to step 1).
e Otherwise, A; marks w with label (M,i) and continues the traversal
of Ts,(v,i) (exploration of B(v,k)).

3. In the third phase, if A; succeeds in marking all the nodes of B(v, k) with
(M,i), then it traverses T, (k) once again in order to lock all the nodes
in B(v, k) by marking them with the extra label (locked,i), i.e., the neigh-
borhood ball is ready to be relabelled according to a rule. If the label of at
least one node w € B(v, k) is not (M,i) then A; unmarks all nodes marked
with label (M,i) or those locked with label (locked,i) and continues the
DFS-traversal of T, (in other words, it reinitializes the W B(w).c field of
nodes w € B(v, k) marked by himself and goes to phase 1). When an agent
Aj; traverses Tg, (, k) in order to lock the nodes, it also collects the topology
of B(v, k) at the same time in order to prepare executing a rule which avoids
to make another traversal.

4. The fourth phase is executed if and only if the agent A; has succeeded locking
all nodes in B(v, k). Hence, the agent traverses B(v, k) for the fourth time
in order to apply a rule. At the same time, it unlocks the nodes in B(v, k).
Finally, the agent continues the DFS-traversal of T, and starts another
cycle in the first phase again.

Note that an agent executes the second phase if and only if it finds a rule to
execute after the first traversal in the first phase. Nevertheless, it may happen
that in the fourth phase, no rule can be applied since the label of some nodes in
B(v, k) may change. In addition, a node w marked (locked,i) by an agent A;
can be updated only by agent A; himself. In other words, if an agent j wants to
mark node w, then he must wait until agent A; unmarks it.

Correctness Analysis. First we argue that the relabeling done by an agent
A; locally on a ball B(v, k) is correct. In fact, the relabeling of a ball is always
done according to a valid relabeling rule described by the relabeling system given
in input. Furthermore, whenever an agent is being relabeling a node w (or an
edge) of a ball B(v,k) in phase 4, no other agent could be relabeling a node
w’ in B(v, k) at the same time. The latter property is quite easily proven, too,
since an agent A; begins relabeling a ball B(v, k) in phase 4 if and only if the
entire ball B(v, k) has been marked with label (locked,i), and nodes marked
with label (locked,i) cannot be unlocked by other agents. Now, it remains the
prove that the relabeling is globally correct.



112 B. Derbel, M. Mosbah, and S. Gruner

Lemma 1. Our framework is deadlock free, i.e., an agent cannot be blocked
nfinitely often in any node.

Proof. (Sketch) The only case where an agent A; may wait at a node w is
when w is marked (locked,j) with i # j (phase 2). In other words, the agent A;
may wait if the node w was locked by another agent A;. From the description
of phase 3 and 4, we are sure that node w will be unlocked by agent A;. Since
node w was locked by agent A; this means that agent A; has succeeded into
applying phase 2, i.e., it has marked all nodes in the corresponding B(v, k) ball
with label (M,j). Thus, agent A; is applying either phase 3 or phase 4, while
agent A; is waiting in node w. From the description of phase 3 and 4, agent A;
is never blocked and it always unlocks the nodes in B(v, k). O

The deadlock freeness property stated in the previous lemma is not sufficient to
prove the correctness of our framework. In fact, it only ensures that the agents
will not be blocked waiting for each others, but it does not ensure that the
relabeling rules will be effectively applied. In the following, we argue that if a
rule r has to be executed in any node v in order to continue the relabeling of the
graph, then there exists an agent A4; that succeeds in relabeling B(v, k) within
a finite time according to r.

Note that in the first stage of our framework, an agent at node v always
verifies whether a rule can be applied. Thus if an agent starts marking the nodes
of some ball B(v, k), then this means that some rule can be applied in B(v, k).
Now, observe that if an agent A; fails preparing a ball B(v, k) in phase 3 i.e.,
it fails locking the nodes of B(v,k), then there must exist another agent A;
applying a rule in a ball B(w, k) such that j > ¢ and B(v,k) U B(w, k) # &.
The agent A; may also fail preparing ball B(w,k) because of a neighboring
agent A, with a higher identifier. Using the deadlock freeness property we are
sure that among all agents who passe the first phase, at least the agent having
the highest identifier will succeed applying a rule. Now, suppose that some rule
r has to be executed in some ball B(v,k) in order to continue the relabeling
of the graph, that is no other rule can be applied in any other node before
rule r is applied in B(v,k). Then, the agent A; in the region G; containing
v will be the only agent who passes the first stage of our framework and will
not be disturbed by other neighboring agents when preparing the ball B(v, k)
in phase 3.

Therefore we can conclude that our generic framework is correct; there is no
deadlock, there is no rule starvation, and the relabeling performed by agents
works as intended.

4 Conclusion

In this paper, we have argued that mobile agent paradigm is suitable for imple-
menting distributed algorithms based on relabeling systems. By doing so, we are
approaching a more comprehensive theory of distributed algorithms in which (%)
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relabeling systems are considered as a formal tool-box for designing algorithms
and (4i) our mobile agent algorithms are considered as a practical tool-box for
implementing them. Consequently, the mobile agent algorithms given in this
paper can be considered as the key to a complete solution for designing, proving
and implementing distributed algorithms using relabeling systems.

We believe that mobile agents will play an important role into bringing about a
new theoretical and a practical approach to some classical distributed problems.
Indeed, the abstraction provided by mobile agents allows both an encapsulation
and a modularization of distributed computations over a network, which should
lead to feasible solutions.
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Abstract. We present a graphical implementation for finite processes
of the mobile ambients calculus. Our encoding uses unstructured (i.e.,
non hierarchical) graphs and it is sound and complete with respect to the
structural congruence of the calculus (that is, two processes are equiva-
lent iff they are mapped into isomorphic graphs). With respect to alterna-
tive proposals for the graphical implementation of mobile ambients, our
encoding distinguishes the syntactic structure of a process from the acti-
vation order of a process components. Our solution faithfully captures a
basic feature of the calculus (ambients can be nested and reductions are
propagated across ambient nesting) and it allows to model the reduction
semantics via a graph transformation system containing just three rules.

1 Introduction

Among recently introduced nominal calculi, mobile ambients [I] proved to be
a popular specification formalism. Besides the standard operators for parallel
composition and name restriction, it introduces the notion of ambient, i.e., a
named environment where system evolutions may take place. The application
domains of the calculus proved quite large, as witnessed by its use in system
biology [2]. Moreover, the calculus inspired novel verification tools such as spatial
logic [3], where the logical operators reflect the topological structure of a system.
As it is nowadays standard for nominal calculi, the operational semantics of
mobile ambients is expressed by a set of (structural) axioms, plus a set of infer-
ence rules, inducing a reduction relation on processes. With respect to similar
foundational calculi, though, those rules are rather complex, reflecting the rich
structure of processes. Such a complexity is confirmed by the current (distrib-
uted) implementations for the calculus, as surveyed in [4]. Besides the usual prob-
lems of nominal calculi, linked with the use of message passing for addressing the
so-called magic matching issue (the implicitly global choice for the subprocess
where the reduction has to take place), the abstract machines have to “separate
the logical distribution of ambients (the tree structure given by the syntax) from
their physical distribution (the actual sites they are running on)” [4, p.117]: the
states of the machine thus have to explicitly record the nesting of ambients.
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This paper presents a graphical implementation for the mobile ambients cal-
culus that exploits the dichotomy between the tree structure of a process and the
topology associated to its activation points, i.e., to those ambients that actually
allow for the evolution of the subprocesses they contain. The encoding is then
exploited to recast the complex operational semantics of the calculus by an easy
and natural presentation via DPO rules, thus inheriting the wealth of tools and
techniques for system analysis that are available for graph transformation.

It has been indeed since its origins in the late 1960’s that the theory of graph
transformation has been successfully applied in those areas where both static
and dynamic modeling of systems by graphical structures play an important
role. Graph rewriting has been used, for example, as a computational model for
functional programming languages and for specifying distributed systems and
visual languages. Only in recent years, though, graph rewriting has been used for
process algebras specification: graphs model processes and graph transformation
techniques simulate the reduction semantics of the calculus at hand.

The widespread acceptance of m-calculus made it the formalism usually con-
sidered when proposing a graphical framework for the description of concurrent
and distributed systems (see e.g. [5] and the references therein), and even more
so after the introduction of Milner’s bigraphs [6]. However, the richness of mo-
bile ambients may prove it a more suitable testbed for the use of graph-based
formalisms in the description of process calculi.

The earliest proposal we are aware of is [7], from where our solution lifts the
use of unstructured graphs in the encoding of processes. Besides introducing a
slender graph syntax (according to [5]), the difference with the previous solution
lies in the chosen representation of the states: the lack of records for the activa-
tion points in [7] forced the introduction of suitable rules for forwarding the in-
formation about “being enabled” to subprocesses. The presence of such spurious
rules, possibly inhibiting the execution of some reductions, made the correspon-
dence between graph transformations and process reductions only weakly sound
and complete (see e.g. [7, Theorems 5.3 and 5.4]). Thus, it made less meaningful
the application of standard tools from graph transformation (such as the differ-
ent parallelism theorems) for discussing about properties of process evolution.
Our chosen state representation allows instead for the reuse of such techniques,
as surveyed in [5] for the m-calculus.

As far as other proposals for graphical implementation are concerned, we are
aware of [89], using the so-called Synchronized Hyperedge Replacement frame-
work, as well as of [I0], in the mold of the standard DPO approach. Moreover,
in [I1] an encoding of mobile ambients by bigraphs is just outlined. As future
work they plan to pursue this in detail, but still no encoding has been proposed.

In general, those SHR solutions are eminently hierarchical, meaning that each
edge/label is itself a structured entity, and possibly a graph. More precisely,
“sequential processes become edge labels: when an action is performed, an edge
labelled by M.P is rewritten as the graph corresponding to P” [8, p. 11]. This
is unfortunate for calculi such as mobile ambients, where the topology of the
systems plays a major role in discussing e.g. about distributed implementation
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and parallel execution of reductions [I2]. Moreover, to the expressive power of the
SHR framework corresponds a rather complex mechanism for rule application,
which compares unfavourably with the basic DPO matching of our solution.

As far as [I0] is concerned, the main difference with respect to our proposal
is in the use of a process representation where the nesting of ambients is made
explicit by the presence of suitable edges, instead of being implicit in the repre-
sentation of each process, as in our proposal. The resulting encoding of processes
is thus centralized, and this condition results in a complex set of graph trans-
formation rules. Moreover, the encoding of process reduction is sound, yet not
complete, thus not allowing the reuse of tools for system analysis that we men-
tioned earlier.

This paper is organized as follows. Section[2 briefly recalls the mobile ambients
calculus. In SectionBwe introduce (typed hyper-)graphs and their extension with
interfaces, while Sectiond presents the DPO approach to their rewriting. Then, in
Section Bl we introduce a graphical encoding for processes of the mobile ambients
calculus, and we present our first result, namely, that our encoding is sound and
complete with respect to the structural congruence of mobile ambients. The
main results of our paper are presented in Section [ which introduces a graph
transformation system for modelling the reduction semantics of mobile ambients.
Finally, Section [0 concludes the paper.

2 Mobile Ambients

In this section we briefly recall the mobile ambients calculus [I]. In particular, we
introduce the syntax and the reduction semantics for the finite, communication
free fragment of the mobile ambients calculus.

Tableshows the syntax of the calculus. We assume a set A/ of names ranging
over by m,n,o,... Also, we let P,Q, R, ... range over the set P of processes.

Table 1. Syntax of mobile ambients

P ::=0,n[P], M.P, (vn)P, P |P; M ::=in n,out n,open n

The restriction operator (vn)P binds n in P. A name n occurring in the scope
of the operator (vn) is called bound, otherwise it is called free. We denote the
set of free names of a process P by fn(P). We adopt the standard notion of
a-conversion of bound names and the standard definition for name substitution.
We write P{™/,} for the process obtained by replacing each free occurrence of
n in P with m, and by a-converting the bound names to avoid conflicts with m.

The semantics of the mobile ambients calculus is given by a structural con-
gruence between processes and a reduction relation. The structural congruence,
denoted by =, is the least relation on processes that satisfies the equations and
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Table 2. Structural congruence

P =Q = n[P] =n[Q] Plo=P
m)P = (vm)(vn)P

P=Q=MP=MQ (vn)(v

P=Q= (vn)P = (vn)Q (vn)(P|Q) = Pl(vn)Q ifn ¢ fn(P)
P=Q= PIR=Q|R (vn)m[P] = m[(vn)P] ifn#m

P|Q = Q|P (vn)o=0

(PIQ)IR = P|(Q|R) (vn)P = (vm)(P{"/n}) if m & fn(P)

the rules shown in Table 2l The congruence relates processes which intuitively
specify the same system, up-to a syntactical rearrangement of its components,
and it is then used to define the operational semantics.

The reduction relation, denoted by —, describes the evolution of processes over
time: P — () means that P reduces to ), that is, P can execute a computational
step and it is transformed into @. Table Bl shows the reduction rules. The first
three rules are the only three axioms for the reduction relation. In particular, the
Red-In rule enables an ambient n to enter a sibling ambient m. The Red-Out rule
enables an ambient n to get out of its parent ambient m. Finally, the last axiom
allows to dissolve the boundary of an ambient n. The Red-Res, Red-Amb and
Red-Par rules say that reduction can occur underneath restriction, ambient and
parallel composition, respectively. Finally, the last rule says that the reduction
relation is closed under the structural congruence =.

As we said above, the structural congruence is used to define the reduction
relation. It is possible to take into account different structural congruence rela-
tions. As in [7], we consider the structural congruence, denoted by =’, defined
as the least relation that satisfies the axiom in Table d and all the equations
and the rules in Table 2] except the axiom (vn)0 = 0. We denote by —' the
reduction relation defined by the rules shown in Table Bl but closed under the
structural congruence =’. Note that considering the structural congruence =’
does not change substantially the reduction semantics. Indeed, the equality in-
troduced by the axiom in Table @ holds in the only observational equivalence
for mobile ambients that we are aware of, proposed in [I3]. In particular, two

Table 3. Reduction relation

nlin m.P|Q]|m[R] — m[n[P|Q]|R] (

mlnlout m.PIQ)|R] — n[P|Q]m|R] (

open n.Pn[Q] — P|Q (Red Open)
P—Q= (vn)P — (vn)Q (Red-Res)
P — Q = n[P] — n[Q)] (Red-Amb)
P— Q= PR— QR (Red-Par)
PP=PP—-QQ=Q =P —Q (Red-Cong)
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Table 4. The additional axiom of the structural congruence

(vn)M.P =" M.(vn)P ifn ¢ fn(M)

processes that are congruent according to the axiom in Table @ are also reduction
barbed congruent.

3 Graphs and Graphs with Interfaces

This section presents some definitions concerning (hyper-)graphs, typed graphs
and graphs with interfaces. It also introduces two operators on graphs with
interfaces. We refer to [I4] and [I5] for a detailed introduction.

Definition 1 (Graphs). A (hyper-)graph is a four-tuple (V, E, s, t) where V is
the set of nodes, E is the set of edges and s,t : 2 — V* are the source and target
functions.

From now on we denote the components of a graph G by Vi, Eg, s¢ and tg.

Definition 2 (Graph morphisms). Let G,G’ be graphs. A (hyper-)graph
morphism f : G — G’ is a pair of functions {fv, fr), such that fy : Vg — Vo
and fg : Eg — Eg and they preserve the source and target functions, i.e.
fvosg=sg o fp and fyotg =tg o fE.

The category of graphs is denoted by Graph. We now give the definition of
typed graph [16], i.e., a graph labelled over a structure that is itself a graph.

Definition 3 (Typed graphs). Let T be a graph. A typed graph G over T is
a graph |G| with a graph morphism 7¢ : |G| — T.

Definition 4 (Typed graph morphisms). Let G, G’ be typed graphs over T.
A typed graph morphism f : G — G’ is a graph morphism f : |G| — |G|
consistent with the typing, i.e., such that ¢ = 1gr o f.

The category of graphs typed over T is denoted by T-Graph. In the following,
we assume a chosen type graph T

To define the encoding for processes inductively, we need operations to com-
pose graphs. So, we equip typed graphs with suitable “handles” for interacting
with an environment. The following definition introduces graphs with interfaces.

Definition 5 (Graphs with interfaces). Let J, K be typed graphs. A graph
with input interface J and output interface K is a triple G = (j, G, k), where G
is a typed graph, j : J — G and k : K — G are injective typed graph morphisms,
and they are called input and output morphisms, respectively.
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Definition 6 (Interface graph morphisms). Let G,G’ be graphs with the
same interfaces. An interface graph morphism f : G = G’ is a typed graph
morphism f : G — G’ between the underlying graphs that preserves the input
and output morphisms.

We denote a graph with input interface J and output interface K by J ERN

G & K. 1f the interfaces J and K are discrete, i.e., they contain only nodes, we
represent them by sets. With an abuse of notation, in the following we refer to
the nodes belonging to the image of the input morphism as inputs. Similarly, we
refer to the nodes belonging to the image of the output morphism as outputs.
We often refer implicitly to a graph with interfaces as the representative of
its isomorphism class. Moreover, we sometimes denote the class of isomorphic
graphs and its components by the same symbol.
Now, we define two binary operators on graphs with discrete interfaces.

Definition 7 (Sequential and parallel composition). Let G = J Lak
KadG =K L G . I be graphs with discrete interfaces. Their sequential

composition is the graph with discrete interfaces Go G' = J Lot 1, where
G" is the disjoint union G W G, modulo the equivalence on nodes induced by
k(x) = j'(x) for all x € Vi, and j” and k" are the uniquely induced arrows.

LetG=J L GE K ada = LN ¢ ¥ K be graphs with discrete
interfaces, such that Tj(x) = 7y (x) for allx € Vy N Vy and T (y) = 7r(y) for

all y € Vg NVk. Their parallel composition is the graph with discrete interfaces

GG =((JulJ) oot (K UK"), where G" is the disjoint union GW G,

modulo the equivalence on nodes induced by j(x) = j'(x) for allx € V;NVy and
k(y) =K' (y) for ally € Vk N Vi, and j", k" are the uniquely induced arrows.

Intuitively, the sequential composition G o G’ is obtained by taking the disjoint
union of the graphs underlying G and G’, and gluing the outputs of G with
the corresponding inputs of G’. Similarly, the parallel composition G ® G’ is
obtained by taking the disjoint union of the graphs underlying G and G’, and
gluing the inputs (outputs) of G with the corresponding inputs (outputs) of
G’. Note that both operations are defined on “concrete” graphs. However, their
results do not depend on the choice of the representatives of their isomorphism
classes.

A graph expression is a term over the syntax containing all graphs with dis-
crete interfaces as constants, and parallel and sequential composition as binary
operators. An expression is well-formed if all the occurrences of both sequential
and parallel composition are defined for the interfaces of their arguments, ac-
cording to Definition [l The interfaces of a well-formed graph expression are
computed inductively from the interfaces of the graphs occurring in it; the
value of the expression is the graph obtained by evaluating all the operators
in it.
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4 Graph Rewriting

In this section we introduce the basic definitions for the DPO approach to the
rewriting of (typed hyper-)graphs [I7/I8] and graphs with interfaces.

Definition 8 (Graph production). A T-typed graph production p : (L L
K 5 R) consists of a production name p and of a span of graph morphisms
(L Y g R) with | mono in T-Graph.

Definition 9 (Graph transformation system). A T-typed graph transfor-
mation system (GTS) G is a pair (T, P), where T is a type graph and P is a set
of productions, all with different names.

Definition 10 (Graph derivation). Let p : (L L K5 R) be a T-typed
graph production and let G be a T-typed graph. A match of p in G is a morphism
my, : L — G. A direct derivation from G to H via production p and match my, is
a diagram as depicted in Figure[d, where (1) and (2) are pushouts in T-Graph.
We denote this derivation by p/m : G = H, for m = (mp,mg, mg), or simply
by G = H.

Before giving the definition of derivation between graphs with interfaces, we
introduce the notion of track function.

Definition 11 (Track function). Let p be a graph production and let p/m :
G = H be a direct derivation, as in Figure [l The track function tr(p/m)
associated with the derivation is the partial graph morphism r*o(I*)~1 : G — H.

T

Y

L R
o
mr, (1) mr (2) MR
| o
G—D——H

I T

Fig.1. A direct derivation

The track function identifies the items before and after a derivation. It is used
to give the definition of derivation between graphs with interfaces.

Definition 12 (Graph with interfaces derivation). Let G = J AL

KandH=J 1> H L K be graphs with interfaces, and let p/m : G = H
be a direct derivation such that the track function tr(p/m) is total on j(J) and
k(K). We say that p/m : G = H is a direct derivation of graphs with interfaces
if ' =tr(p/m)oj and k' =tr(p/m) o k.

Intuitively, a derivation between graphs with interfaces is a direct derivation
between the underlying graphs, such that inputs and outputs are preserved.
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5 Graphical Encoding for Processes of Mobile Ambients

This section introduces a graphical encoding for processes of the mobile ambients
calculus. First of all, we present a suitable type graph, depicted in Figure[2] and
then we define an inductive encoding by exploiting the composition operators
introduced in Definition[7l This corresponds to a variant of the usual construction
of the tree for a term of an algebra: names are interpreted as variables, so they
are mapped to leaves of the graph and can be safely shared.

As we can see, in the type graph there are three types of node. Intuitively,
a node of type o represents an ambient name, while a graph that has as roots
a pair of nodes (¢, e) represents a process. More precisely, the node of type ¢
represents the activating point for reductions of the process represented by the
graph. We need two different types of node to model processes by graphs because
each graph has to model both syntactical dependences between the operators of
the process and their activation dependences. Indeed, in mobile ambients the
nesting of operators does not reflect the activation dependences between them,
since reductions can occur inside ambients. So, in order to model a process, we
use e nodes to model the syntactical dependences between the operators of the
process, and ¢ nodes to model their activation dependences.

Each edge of the type graph, except the go edge, simulates an operator of
mobile ambients. Note that the act edge actually represents three edges, namely
in, out and open. These three edges simulate the capabilities of the calculus,
while the amb edge simulates the ambient operator. Notice that there are no
edges to simulate the restriction operator and the parallel composition. Finally,
the go edge is a syntactical device for detecting the “entry” point for the compu-
tation. We need it later to simulate the reduction semantics of mobile ambients.
It allows to avoid that a reduction can occur underneath a capability operator.

All edges, except go edge, have the same type of source, that is the node list
(o, @), while they have different types of target. In particular, the amb edge has
the node list (e, o) as target, while the in, out and open edges have the same type
of target, i.e. the node list (¢, e, 0). Note that the three latter edges have a node
¢ in the target. This node represents the activating point for the reductions of
the continuation of the capability. It is different from the activating point of the

Fig. 2. The type graph (for act € {in, out, open})
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a >0 O Lo a a PO L a
P >e act o< P P >e amb o< P a '><>
o< n o4 n

Fig. 3. Graphs act, (with act € {in, out,open}); amb,; and go (left to right)

outermost capability operator, because the reductions of the continuation can
occur only after the action regulated by the capability is executed. The amb edge
instead has no node of type ¢ in its target. In fact, the activating point for the
reductions of the process inside an ambient is the same activating point of the
outermost ambient. This occurs because process reductions permeate ambients.

Now we define a class of graphs such that all processes can be encoded into an
expression containing only those graphs as constants, and parallel and sequential
composition as binary operators. Figures Bl and @] depict these constant graphs.
In particular, Figure [B] presents the graphs that correspond to the edges of the
type graph. Figure [ presents additional constant graphs needed for the formal
presentation of our encoding. Note that in the graphs of the two figures we
denote the input interface on the left and the output interface on the right.
For example, the graph amb,, in the middle of Figure [ has as input interface
{a,p} and as output interface {a, p,n}. Since a and p are constants used by our
encoding, we assume that p,a ¢ N, while n € N' (where N is the set of names
of mobile ambients).

In the following, we use 0y, as shorthand for 0, ® 0,,. Moreover, for a set of
names I', we use idr and newr as shorthands for ), id, and &), news,
respectively. Note that both last expressions are well defined, because the ®
operator is associative. The definition below introduces the encoding of processes
into graphs with interfaces. It maps each finite process into a graph expression.

Definition 13 (Encoding for processes). Let P be a finite process and let I'
be a set of names such that fn(P) C I'. The encoding of P, denoted by [P] ., is
defined by structural induction according to the rules in Table [3

Note that the encoding [M.P] . represents the encoding of in n.P, out n.P and

open n.P, while act,, represents the in,,, out,, and open,, graphs, respectively.
Our encoding solves the a-conversion of restricted names by denoting them

with o nodes that are not in the image of the variable morphism. The mapping

Fig. 4. Graphs 0, and 0p; 0, and new,; and id, (top to bottom and left to right)
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Table 5. Encoding for processes

[ol - = 04,p ® newr

[n[P]], = ambno (idn @ [P]})

[M.Pl, = actno(id,®[P]})

()Pl = [P{"/n}]rimy © (Om @ idr) form¢ I’
[Plel, = [PlrelQl,

is well defined in the sense that the result is independent of the choice of the
name m in the rule for restriction.

The encoding [P], where I" is a set of names such that fn(P) C I', is a
graph with interfaces ({a, p}, I'). We note that the mapping is not surjective. In
fact, there are graphs with interfaces ({a, p}, I") that are not in the image of the
encoding. The encoding of a process P is the graph [[P]]fn(P). Below we give an
example of encoding of a process.

Ezample 1. Let us consider the example below, originally proposed in [I], which
illustrates a form of planned dissolution of an ambient n:

R = nlacid[out n.open n.P]|Q]|open acid.0.

Figures[Bldepicts the graph encoding [R] n(r)- We represent the graph encodings
for the processes P and @@ by Gp and Gg, respectively. Moreover, for the sake
of simplicity, we assume that the ambient names n and acid do not belong to
the set of free names of P and (). For the moment, the reader can ignore the
edge labelled go and the labels of the nodes.

The leftmost edges, labelled amb and open, have the same roots, into which the
names a and p are mapped. Those two edges represent the topmost operators of
the two parallel components of the process. The edges in the middle, representing
from left to right the operators acid| | and out n. , respectively, are linked to the
same ¢ root. Intuitively, this means that they have the same activating point of
the outermost ambient, and hence the reductions can permeate the two ambients
n and acid. Instead, the rightmost edge, labelled open, has a different ¢ source

Fig. 5. Graph encoding for the process nlacid[out n.open n.P]|Q]|open acid.0
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that is the target of the edge out. Intuitively, this means that this capability
open can be executed only after the action out.

The following theorem states that our encoding is sound and complete with
respect to the structural congruence ='.

Theorem 1. Let P,Q be processes and let I' be a set of mames, such that
fn(P)U fn(Q) C I'. Then, P =" Q if and only if [P], = [Q] -

6 A Graph Transformation System for Mobile Ambients

This section presents a graph rewriting system that models the reduction se-
mantics of the mobile ambients calculus.

First of all, we enrich the encoding introduced in Definition [[3in order to avoid
performing reductions underneath capability operators. To do this we attach a
go edge to the ¢ root node of each graph representing a process. The go edge is
a syntactical device needed for detecting the “entry” point for the computation
of the process. Given a process P and a set of names I such that fn(P) C I',
its enriched encoding is the graph [P] ® go. We denote it by [P]?".

Figure [d presents the rules of the GTS Rgmp, which simulates the reduction
semantics —’ introduced in Section 2l The GTS Ramp contains just three rules,
namely Din, Pout and popen. They simulate the Red-In, Red-Out and Red-Open
reductions, respectively. The action of the three rules is described by the node
identifiers. These identifiers are of course arbitrary. They correspond to the ac-
tual elements of the set of nodes and are used to characterize the track function.

Now we discuss the rules of the GTS R4mp. In order to give a clear explanation
of the rule actions, we denote by amb,, an amb edge having in its target a o node
identified by n. Let us consider the p;, production. The p;, rule preserves the
amb,,, edge, removes the amb,, edge and re-creates this last one under amb,,.
Note that, after the reduction, the in edge disappears and the nodes identified
by 2, and 3, are coalesced. Moreover, the ¢ node under the in prefix is activated.

The pyyt rule preserves the amb,, edge and removes the amb,, edge, too. It
also re-creates this last one with the same source nodes of amb,,. Analogously
to pin, after the reduction the out edge disappears and the nodes identified by
3, and 4, are coalesced. Moreover, the ¢ node under the out prefix is activated.

Finally, the popen production removes both amb and open edges. After the
reduction, all the ¢ nodes and all the e nodes are coalesced, respectively. Fur-
thermore, the ¢ node under the open prefix is activated.

It seems noteworthy that three rules suffice for recasting the reduction seman-
tics of mobile ambients. That is possible for two reasons. First, the closure of
reduction with respect to contexts is obtained by the fact that graph morphisms
allow the embedding of a graph within a larger one. Second, no distinct instance
of the rules is needed, since graph isomorphism takes care of the closure with
respect to structural congruence, and interfaces of the renaming of free names.

We now introduce the main theorems of the paper. They state that our en-
coding is sound and complete with respect to the reduction relation —'.
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Lopen Kopen Ropen

Fig. 6. The rewriting rules pin, Pout and Popen (top to bottom)

Theorem 2 (Soundness). Let P,Q be processes and I' a set of names, with
fn(P)CI. If P—'"Q, then Rams entails a direct deriwvation [P} = [Q]%.

Intuitively, a process reduction is simulated by applying a rule on an enabled
event, that is, by a match covering a subgraph with the go operator on top.

Theorem 3 (Completeness). Let P be a process and I' a set of names, with
fn(P) C I'. If Ramp entails a direct derivation [P} = G, then there exists a
process Q, such that P —' Q and G = Q] .

The correspondence holds since a rule is applied only if there is a match that
covers a subgraph with the go operator on the top. This allows the occurrence
of reductions inside activated ambients, but not inside capabilities. In fact, if an
amb operator is activated, that is, its ¢ source node has an outgoing go edge, then
all operators inside it are activated too, because they have the same source node
© as the amb operator. Differently, a reduction can not occur inside the outermost
capability, because the activating point for the reductions of the continuation of
a capability is different from the activating point of the outermost capability.

The following example shows the application of some rules of the GTS Ramp
to the graph encoding for the process considered in Example [Il
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Fig. 8. Graph encoding [open n.Pn[Q]]%] &,

Ezample 2. Let us consider again the process shown in Example [T}
R = nlacid[out n.open n.P]|Q]|open acid.O.

The graphical encoding for the process above is depicted in Figure Bl The
nodes are labelled in order to denote the track function of the derivation. The
edge labelled go denote the entry point for the computation of the process.
Note that the two edges amb, the edge out and the outermost edge open can be
involved in a reduction step because they have the same activation node with
an outgoing go edge. Instead, the rightmost edge, labelled open, is not activated,
since its ¢ source is the target of another edge.

The application of the py: rule to the graph in Figure re-
sults in the graph in Figure [l which is the encoding for the process
acid[open n.P]In[Q]|open acid.0. In fact, this rewriting step simulates the transi-
tion nlacid[out n.open n.P]|Q]|open acid.0 —' acid[open n.P]|n|Q]|open acid.O.

Now, we can apply the popen rule to the graph in Figure [[l and we obtain
the graph in Figure 8l Note that this rewriting step simulates the transition
acid[open n.P]In[Q]|open acid.0 —' open n.P|n[Q)].

Finally, by applying the popen rule to the graph in Figure[8] we get the graph
in Figure[d The derivation mimics the reduction open n.P|n[Q] —' P|Q.
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Ce
p > 411613 21’

Fig. 9. Graph encoding [[P|Q]]7.Z(R)

Fig. 10. Graph encoding for the process m[n[P]|open n.Q]lopen m.R

The rewriting steps shown in the example above simulate a sequence of process
reductions all occurring on the top. The next example shows instead how our
encoding is able to simulate process reductions nested inside ambients.

Ezample 3. Let S be the process m[n[P]|open n.Q]lopen m.R, previously pro-
posed in [7]. The encoding [[S]]ff;(s) is depicted in Figure For the sake of
simplicity, we assume that the names m and n do not belong to the free names
of P, @ and R.

1, 3pdp
Py el —Sep

Fig. 11. Graph encodings [m[P|Q]|open m.R]$) ) and [P|Q|R]$), s (left to right)
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The rewriting step, resulting in the graph on the left of Figure [[1l is obtained
by applying the popen rule and it simulates the process reduction nested in-
side the ambient m, namely, m[n[P]lopen n.Q]|open m.R —' m[P|Q]|open m.R.
The application of the ppen rule to the graph on the left results instead in
the graph on the right of Figure [[I} This rewriting step mimics the transi-
tion m[P|Q]lopen m.R —' P|Q|R. Note that, as discussed in [7, Section 5.3,
these two reductions are parallel independent, hence they can be executed
in any order, obtaining two derivations that differ only in the scheduling
of the two steps. The two derivations thus correspond to the same graph

process [16].

7 Conclusions and Further Work

We presented an encoding for finite, communication-free processes of mobile
ambients into graphs, proving its soundness and completeness with respect to
the operational semantics of the calculus. Differently from alternative proposals,
it is based on unstructured graphs and standard DPO approach tools, thus
allowing for the reuse of analysis techniques from the graph transformation mold,
along the lines of graphical encodings presented in [Bl7]. Most importantly, our
encoding has the ability both to model the syntactic structure of a process and
to keep track of its activation points, that is, of those ambients where reductions
may actually take place. Therefore, it allows a simply and faithful modeling of
the reduction semantics of mobile ambients.

For the sake of space, we discarded from our presentation the communica-
tion primitives of the calculus, as well as recursive expressions: both could be
tackled along the lines of the solution in [5]. The article also offers a list of ap-
plications for the graphical encoding of m-calculus [5 Section 8], which could
be immediately lifted to our encoding of mobile ambients. They range from the
use of graphs for verifying system properties expressed by spatial logic, to the
use of the borrowed contexts [19] approach for deriving a labelled transition sys-
tem for mobile ambients. It should be remarked that this array of applications
is possible thanks to our graphical implementation, where the tree structure of
a process is decoupled from its activation points. Moreover, the lack of activa-
tion rules (needed instead in [7]) guarantees a direct correspondence between
process reductions and graph derivations, thus allows for the simultaneous ex-
ecution of reductions, possibly nested inside ambients as well as sharing some
resources.

Our next step is the study of the labelled transition system for mobile am-
bients, which can be obtained by exploiting the borrowed context technique
discussed above. The borrowed approach proved to be able to characterize
strong bisimulation for a simple process calculi, namely, Milner’'s CCS [20].
Since we are aware only of the process equivalence proposed by [13], the
analysis of the graph-based equivalence could prove pivotal in validating that
proposal.
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Abstract. Synchronising Graphs is a system of parallel graph transformation de-
signed for modeling process interaction in a network environment. We propose
a theory of context-free synchronising graphs and a novel notion of bisimulation
equivalence which is shown to be a congruence with respect to graph composi-
tion and node restriction. We use this notion of equivalence to study some sam-
ple network applications, and show that our bisimulation equivalence captures
notions like functional equivalence of logical switches, equivalence of channel
implementations and level of fault tolerance of a network.

1 Introduction

Synchronising Graphs (SG) is a system of parallel graph transformation designed for
modeling process interaction in a network environment. The system is inspired by [8]],
and it stems from the Synchronized Hyperedge Replacement (SHR) of [10], with which
it has been compared in [4]. In the SG model, as in SHR, hyperedges represent agents, or
software components, while nodes are thought of as communication channels, synchro-
nisation points or, more generally, network communication infrastructure. The idea that
hypergraphs may interact by synchronising action and co-action pairs at specific syn-
chronisation points (the nodes) is quite intuitive, while the flexibility of the model in
representing diverse network topologies and communication protocols makes SG fit as
a common semantic framework for interpreting different calculi. We followed this idea
in [3]], where Mobile Ambients [2] and the distributed CCS of [22]] (without restriction)
were both modeled in SG by using a common recursive architecture.

Here, we explore an orthogonal issue, namely the behavioural equivalence of SG.
Indeed, such equivalences are often sought in the theory of concurrency for proving
the conformance of an implementation with respect to a specification or for achieving
a sort of compositionality in the semantics. If we identify the meaning of a process
in its abstract behaviour (which is traditionally considered its bisimulation equivalence
class), compositionality requires that, when equivalent processes (e.g. a specification
and an implementation) are plugged into the same context, they behave in the same
way. This amounts to proving that bisimulation equivalence is a congruence. However,
although such results are abundant in the literature for process calculi, not so for graph
rewriting, where system behaviour is typically context dependent.

To our knowledge, the most strictly related notions of behavioural equivalence pro-
posed for related systems of graph transformation are and [14]. The first paper
proposes a behavioural equivalence for a model called synchronised graph rewriting; as

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 1311146]2008.
© Springer-Verlag Berlin Heidelberg 2008
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pointed out by the authors, this equivalence is rather coarse, in that it is not able to distin-
guish graphs with different degrees of parallelism. In this paper, we meet their challenge
for a finer notion and propose one capable of detecting parallelism (it is indeed possible
to implement in SG Plotkin’s parallel or). The behavioural equivalence of [14] refers
to a system of graph rewriting, the SHR of [10], which differs from ours in the mathe-
matical presentation of graphs, in their LTS and, more importantly, in the proof theory.
Syntax is pervasive in SHR, which is more deeply rooted in the field of process calculi,
of which it shares notions such as structural congruence and name binding. Nodes are
treated as names are in process calculi. Unlike in SG, no semantic difference can be
made between two nodes beside them being distinct. Not always so in graph rewrit-
ing, where transformations may depend on attachment to specific nodes. As shown in
Section [3 (example [3)), such dependency may cause non-compositional behaviour.
Hence, while compositionality is to be expected in hyperedge replacement [14]], not so
for SG, which allows, as many graph rewrinting systems [[7], context-dependent specifi-
cations. Thus, we characterise the theories of synchronising graphs, called context-free
where compositionality holds. A natural notion of bisimulation equivalence is intro-
duced to capture their abstract behaviour, and proven a congruence in any context-free
theory. A similar result is presented in [14] for hyperedge replacement by exploiting
the sytactic presentation of graphs and referring to results obtained in [23] in the con-
text of structural operational semantics. Here we provide a direct proof, which relies on
no syntax and sheds light on the meta-theoretical properties of our system (Lemmas/[I]
and ). While imposing on axiom formats built-in features of SHR, our result is no
special case of that in [14], as discussed in the conclusions.

Then, we use our framework for modeling four network applications where the
proposed notion of bisimulation equivalence is shown to capture interesting proper-
ties. In the first application we consider network implementations of logical switches.
Here bisimulation equivalence corresponds to functional equivalence, in that equivalent
networks have an identical input-output behaviour. Then, we consider network imple-
mentations of communication channels, where information items can travel in parallel.
Bisimulation equivalence is shown to capture the notion of (static) channel capacity. In
the third scenario, we refine the previous model by introducing node charges, that are
consumed upon passage of information. This feature cruises in several wireless appli-
cations and becomes a crucial issue in “extreme” applications like the Smart Dust [24].
Here bisimulation equivalence implies identity of dynamic capacity but provides a finer
notion of observational equivalence which can be employed for net optimisation. Fi-
nally, we study the impact of failure in a communication net and show that bisimulation
equivalence characterises exactly the degree of fault tolerance, or robustness, of a net.

The paper is structured as follows. In Section 2] we present the general model of
SG. In Section 3] we investigate the possible sources of context dependency in SG and
focus on context-free SG; a novel notion of bisimulation equivalence is then introduced
and shown to be a congruence. Section ] presents the applications. Section[3concludes
the paper by discussing related work and by hinting at current and future research. For
space reasons, all proofs have been omitted; the interested reader can find them in the
on-line version at http://www.dsi.uniromal.it/ "gorla/publications.htm.
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2 Synchronising Graphs

Let N be a set of nodes, which we consider fixed throughout. A graph (E, G, R) consists
of a set E of hyperedges, an attachment function G : E — N™ and a set R C |G| of
nodes, called restricted, where |G| = {x € N|de € E s.t. x € G ¢} is the set of nodes of
the graph. When clear from the context or when not important, we shall write a graph
by simply specifying its attachment function. When Ge = x;x,  x, (we shall often
abbreviate x;x,  x, as x), we call n the arity of e and say that the i-th tentacle of e is
attached to x;. We denote by res (G) the set of restricted nodes of G, and by fn (G) the
set |G| res(G) of free nodes. We write e(x) for an hyperedge such that G e = x.

Let Act = {a,b, }U{a,b, } be a set of actions; we call a the co-action of a,

and intend a by a. A pre-transition is a triple (G, A, H), written G A H (or just A
for short), where A € N X Act X N* is a relation, while G and H are graphs, called
respectively the source and the destination of A. Intuitively, (x,a,y) € A expresses the
occurrence of action a at node x, which can be thought as a communication channel,
while the elements of y, called objects, are thought of as arguments. When y is the
empty sequence €, (x, a, €) is written (x, a).

In SG the occurrence of both (x,a,y) and (x,a, z) in A is called a synchronisation,
and it corresponds to the silent action T of most process calculi. Synchronising hyper-
edges may exchange information. This is implemented in SG by unifying the lists y and
z of objects, which are required to be of the same length. Only two agents at a time may
synchronise at one node. Moreover, if an action occurs at a restricted node, then it must
synchronise with a corresponding co-action, as we consider observable the unsynchro-
nised actions. A restricted node may be “opened” by unifying it with an argument of an
observable action, or with a node which is not restricted.

Notation. If ¢ C A X Bis arelation and a € A, we write pa the set {b € B : (a,b) € ¢}.
The domain of ¢ is the set dom(p) = {a € A : b € B (a,b) € ¢}. A function
f A — Bissaid to agree with ¢ when fx € ¢ x, for all x € A. If ¢ is an equivalence
relation, [x], is the equivalence class of an element x, which we write [x] when ¢ is
understood. A unifier of ¢ is a function f which agrees with ¢ as above and such that
flx] is a singleton, for all x.

If f : N — N is afunction on nodes and (E, G, R) is a graph, we write fG the graph
(E, fG, fR) obtained by substituting all nodes x in G with fx. More precisely, for all
ecE,if Ge=x; x,then(fG)e = fx;  fx,.

Given a pre-transition G A» H, we denote by |A]| the set |G| U|H| and by res (A) the set
res (G) U res(H). By obj(A) we denote the set {y € N : A(x,a,y) € Asuchthaty e y}.
We omit parentheses and braces when listing the elements of A above a transition arrow.

An action set is arelation A € N XAct X N* such that, for all nodes x, A x has at most
two elements and, when so, it is of the form {(a, y), (a, )}, where y and z are vectors of
identical length. Given an action set A, we denote by 2 the smallest equivalence rela-

. . . A
tion on nodes such that, if (x,a,y;y»  y,) and (x,a,z1220  z,) are in A, then y; = z;,
fori =1 n.By aslight abuse, we say that a function agrees with (or unifies) an action

. . . LA .
set A to mean that it agrees with (unifies) the relation =. Arguments of unsynchronised
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actions are called dangling. More precisely, we call dangling in A the elements of the
set dng(A) = {z € obj(A) : Ax={(a,y)} and z 4 y, for some x and y € y}.

Definition 1. A transition is a pre-transition G — H such that:

1. Ais an action set such that dom(A) U obj(A) C |G,

2. ifanode x is restricted in G then A x is not a singleton;

3. if x € |H|, then x € tn(H) if and only if x € fn(G) U dng(A).

4. H = pH for some unifier p of A such that p x € th(G) for all x € tn(G).

Condition [l expresses the locality of action: graphs can only act upon their own nodes.

By this condition, for example, the pre-transition e(x) 2, d(y), legal in SHR, is not
a transition, because y ¢ |e(x)|. A consequence of [Tl and Blis that all free nodes in the

destination of a transition must occur in the source. Hence, while e(x) — vyd(y) is

a legal transition, e(x) g d(y) is not. This rules ownership of nodes: the access to a
new channel is only acquired via synchronisation. Conditiondl enforces fusions. It also
grants a privilege to the free nodes when they are fused with the bound, which allows
X,d, X X,d,x
x,a,y x,a.,y
vye(xy) — d(x) and forbids vye(xy) — d(y). This restriction is not essential for
the theory of synchronising graphs while it simplifies the meta-theory without loss of
generality.
In SG, synchronisation is subject to a non-interference condition: two transitions can
be synchronised provided they are disjoint and they share no restricted nodes. Formally,

G i> Hand F g K are said to be non-interfering, written A # @, whenever AN O = ()
and res (A) N O] = res(O) N |A] = 0. It is an easy check that the only nodes two non-
interfering transitions may have in common are the free nodes in their sources.

The rules of the system of synchronising graphs are given below. The composite of
two graphs (E,G,R) and (D, F, S), written G|F, is defined when E and D are disjoint
and moreover res (G) N |F| = res(F) N |G| = 0; when so, G|F is the graph (E U D,G +
F,RUS), where G+ F is the attachment function mappinge € EtoGeandd € Dto Fd.
We let vx G denote the graph (E, G, R U {x}) when x € |G|, while vx G = G otherwise.

A5 FS«k

[sync] e A#0 and p unifies AU @
GIF "% p(HIK)
G5 H G5 H
[open ] x € dng(A) [res ] x ¢ dng(A)
vxG i> H vxG i> vx H

A theory of synchronising graphs is a set of transitions which is closed under the in-
ference rules. The smallest theory including a given set A of transitions is said to be
generated by the axioms in A.
Note that inference rules assume, as implicit side condition, that the conclusion be
.- x,a.y
a transition. Hence, for example, the rule [ sync ] does not apply to vye(xy) — f(v)

and vzd(xz) ez, g(z) because the conclusion would violate conditionBof definition[Il



Network Applications of Graph Bisimulation 135

Fig. 1. A non-deterministic commuter

Also note that, differently from the z-calculus [19]], we do not have a “close” rule to
close the scope of a restricted name after having opened it via an “open” rule. This
is related to the fact that every inference in SG can be rewritten in a sort of ‘normal
form” where all the applications of [res] and [open] needed to infer the judgement
come after all the applications of [ sync ] (see Lemmata[lland[2l1ater on). This is similar
to the presentations of the LTS for the n-calculus that include structural equivalence:
in those cases, a “close” rule is omitted because redundant. Thus, for example, we
can build an inference for the graph vxG | vyH where the two parallel components

synchronise, assuming that G % G and that H 5 H: indeed, vxG | vyH is just
another (but exactly identical) way of writing the graph vx(vy(G | H)), that reduces to,
e.g., vx(vy(G’" | H'{x/y})) after a transition {(z, a, x), (z, @, y)}.

Example 1 (A non-deterministic commuter). Consider a system consisting of several
input and output sockets. The system, which we shall call non-deterministic commuter,
acts by non-deterministically connecting client processes (possibly attached to an input
socket) with one of the output sockets (where server processes may be attached). Con-
nections are established one at a time. Figure [Tl depicts a commuter C with three input
and two output sockets. A client process r is being connected with a server q.

Non-deterministic commuters can be engineered in SG by assembling simple com-
ponents (edges) of the form in (x u) and out (u y), representing input and output sockets
respectively. Clients are meant to be attached to the x node of a socket, while servers are
attached to y. The node u represents an internal communication channel of the system.
As elsewhere in the paper, we may use the same name to denote distinct edges repre-
senting components of the same kind. For example, in (x «) | in (zu) will denote a graph
with two edges, each representing an input socket. Then, ignoring the two unused sock-
ets of C (viz., the second input socket and the second output socket), the initial state of
the commuter is represented by the graph vu (in (xu) | in (zu)| out (uy)). The system’s
behaviour is specified by the following two transitions, where a and a represent the
input and output actions respectively:

. u.a,x
in(xu) —

0 out (uy) “ out (u y)

To be precise, these are to be considered as axiom schemes, and we assume one axiom
of the first kind for each input socket and one of the second for each output. In the
present example, we further assume that any hyperedge can perform a passive (empty)
transition to itself. Then, ignoring p and its socket, the transition of figure[Tlis obtained

u.a.y

as 1(2)1q0y) vu (inzu) lout uy))  — r(y) | q(y) | viwout (uy). o
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To conclude the presentation of SG, we give two meta-theoretical lemmata showing
that any transition in a given theory can be inferred by a canonical derivation where all
applications of [ sync ] precede [res ] and [ open ].

A 6 ..
Notation. Let G - H and F — K be transitions; we denote by A * @ the set of

transitions of the form G|F A8, p(H|K) obtained by synchronising A and @ with
[sync]. Clearly, A * © is empty when A and @ interfere. The expression (A * @) = @
stands for | gep.0(Z * @). Similarly, we let vx A be the transition which results from
restricting A on x by an application of [res] or [open]. The expression vx (A * @)
denotes the set of transitions of the form vx = with = € A = .

Lemma 1. Let A and O be transitions and let x occur unrestricted in the source of A.
Then, (vx A) = @ C vx (A = O).

X,a,Z
The opposite inclusion does not hold: vy e(xy) | vzd(xz) =2, vy (h(y) | k(y)) is included
in vy (A = ©) where A is e(xy) RN h(y) and O is vzd(x z) A k(z), while (vy A) = ©
is empty because the result of applying [ sync] to vy A and @ violates condition [3] of
definition[T]

Lemma 2. Synchronisation is associative: (A * @) * 5 = A % (O = X).

3 Context-Free Theories and Behavioural Equivalence

One of the aims of the present paper is to characterise the theories of synchronising
graphs in which the behaviour of a graph is not affected by the context. The following
examples will clarify this concept.

Example 2. In the theory generated by a unique axiom e|d 5 0, the two processes e and
d, considered in isolation, have the same behaviour: none of them can move. However,
if set in the context [ ]|d, the two processes exhibit quite different behaviour, as e|d can
move while d|d cannot.

Example 3. In the theory generated by a unique axiom vx e(x) 5 0, the process e(x)
cannot move, thus exhibiting the same catatonic behaviour as the empty process 0.
However, when set in a context vx[ | where x is restricted, vx e(x) can move while
vx () = ( cannot.

Example 4. In the theory generated by the four axioms A(xy) =2, 0,d 5 d, e(xy) g

e(xy) and e(x x) g 0, e(xy) behaves just like the process d, cycling forever over itself.
However, when put in parallel with A(xy), e(xy) yields a trace which h(xy)|d does not

X,d,X

have: h(xy)le(xy) 2, e(xx) 5 0.

Example 5. In the theory generated by the three axioms h(xy) =, 0,d LN d and

e(x) g e(x), the processes e(x) and d have the same behaviour. However, when put
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in parallel with h(xy), e(x) yields a transition to a catatonic state, namely e(y), which
h(xy)|d cannot reach.

These are in fact the only possible sources of context dependency in a theory of synchro-
nising graphs. This is shown in the present section by providing a notion of bisimulation
equivalence on graphs and then proving that, in any theory generated by axioms includ-
ing no transitions of the kind described in the examples, the proposed equivalence is a
congruence with respect to restriction and parallel composition.

In this section we abandon the brute force notion of node substitution in a graph
G adopted in the previous section and denote by AG the graph obtained by applying a
substitution % to the free nodes of G, while restricted nodes are suitably renamed so as to
avoid capture. This simplifies the treatment while remaining consistent with the theory
developed so far. In particular, note that the new interpretation of p(H|K) in [ sync | does
not alter the set of derivable transitions.

An instance of a transition G Ny is a transition of the form hG e p hH where h is
a node substitution N'— N and p is a unifier of hA. A production is a transition whose
source consists of a single hyperedge e(x), where all components of x are distinct and
none of them is restricted. A theory of synchronising graphs is called context-free when
it is generated by all the instances of a given set of productions. Note that the constraints
that productions are asked to satisfy prevent the first three examples of context depen-
dency to occur, while the use of all their instances for generating the theory accounts
for the fourth example.

We now move to the definition of our behavioural equivalence; to this aim, we call
parameters the elements of the set # = N X Act x N. Intuitively, a parameter (x, a, i)
is an abstraction over the i-th argument y; of an action (x,a,y). We call observations
the elements of the set O = N U P. Given an action set A, the relation 4 extends to a
relation 4{, on observations that is the smallest equivalence relation containing 2 such
that (x,a, i) £, (x,a, i) and moreover (v, b, j) 2, 2if (y.b, 21 z; z)€Aandz=z;.

Not all pairs of éo are observable. The set obs(A) of observables of a transition
G A» H consists of its observable nodes, the set of which we denote by |A|,, together
with the parameters of unsynchronised actions: obs(A) = |Al, U {(x,a,i) € P : Ax

=l

{(a,y)}and 0 <i <|y|}, where |A|, = {x € fn(G) : x € dom(A) or x is dangling or x
y # x for some y € fn(G)}. Note that, by the definition of |A|,, while x is observable in

x,a,y
x,a.y ) .. . « . ’9 :
e(xy) — H,yisnotbecause, although it is free in e(xy), “self-fusion” has no bearing
. . . . A . A
on the interacting environment. The observable part of the relation =,, written =, is the

equivalence relation obtained by restricting 40 to obs(A); thus, we let p 4 q if and only
if p 2, gand p, g € obs(A).

A 2]

Definition 2. Two transitions G AN H and F S, K are called equivalent when
and{x € fn(G) : |[Ax]=2}={yefn(F) : |Oy =2}

In our study of behavioural equivalence we follow a standard practice in process algebra
where alpha-equivalent terms are considered as identical. In our context this amounts to
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defining behaviour on classes of alpha-equivalent graphs, that is graphs which are iden-
tical up to renaming of restricted nodes. We shall call such classes abstract graphs, and
write them in bold, G. Any theory of synchronising graphs yields a transition system of

abstract graphs which includes G A Hif and only if G NH is in the theory, for some
GeGandH e H.

Notice that the notion of free names can be extended to abstract graphs since, for
every G and G’ in G, it holds that fn(G) = fn(G’); thus, the notion of equivalent

transitions scales to abstract graphs as well. A transition G A H s said to be Sfair with
an abstract graph F when none of the nodes in obj(A) \ fn(G) is free in F.

Definition 3. A simulation is a binary relation S on abstract graphs such that GS F

implies that, for all transitions G L H fair with F, there exists a transition F 5, K such
that A and O are equivalent, and HS K. An abstract graph G is simulated by a graph
F, written G < F, if there exists a simulation S such that GS F. A bisimulation is a
symmetric simulation. Two abstract graphs G and F are called bisimulation equivalent,
written G ~ F, when they are related by a bisimulation.

Notice that the fairness condition asked for G > H in the previous definition is standard
in name-passing calculi, e.g. the w-calculus [19].

Composition and restriction extend to abstract graphs. In particular, vx G is [vx G],,
for some G € G such that x ¢ res(G), while G|F is [G|F],, for some G € G and F € F
such that G|F is defined. Note that the above definitions do not depend on specific
choices of G and F'. A relation R on abstract graphs is called a congruence when G RF
implies vx G Rvx F and G/H R F|H, for all x and H.

Theorem 1. Bisimulation equivalence is a congruence.
Proof (Sketch). The result is proven by showing that the symmetric relation
R = {(vx (G|U), vx (FIU)) : G < F}

is a simulation. Then, closure under parallel composition is obtained by letting x be
the empty vector; closure under name restriction is obtained by letting U be [(0; 0; 0)],.
Lemmas[Iland 2] are used. See appendix for detail. o

4 Network Applications

4.1 A Non-deterministic Commuter (Example [ Continued)

The internal communication channel of the non-deterministic commuter can be im-
plemented by a local network without affecting the observable behaviour of the sys-
tem. We build such internal infrastructure by means of simple components, called
connectors, of the form c(uju,v). Connectors echo the information received from u;
(call it the input node) over u, (the output node) using a service node v for the
matching. Once v has served its purpose, a new service node is created. In symbols:
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Fig. 2. An implementation of the commuter in Figure [Tl (we draw labeled boxes for hyperedges
and bullets for nodes; the latter are solid when restricted and clear otherwise; tentacles are repre-
sented by lines connecting hyperedges with nodes)

uy,a,v

Un,a,v . . .

c(uiurv) — vw c(ujuow). The internal channel of the commuter in Figure [I] can be
implemented by the net G of four connectors in Figure 21 In symbols, grouping all
indexed names into vectors:

G=vuvpx)|q(y)|r@@)|in(zur)lin(xuz)
[ c1(uiuavy) | ca(uauzva) | c3(uzuavs) | ca(uzusva) | out (ugy)

With this implementation, the transition in Example [ is simulated by an equiva-

lent transition G 25 H , where (by ignoring all the unused sockets and connec-
tors) H = r(y)[qy)| vuw (ci(uiuowr) | co(uouzwr) | c3(uzusws) | out (usy)) and A is
{(u1,a,2), (w1, a,v1), (u2,a,vy), (U2, a, v2), (us, a, v2), (U3, a, vs), (us, a, vs3), (us, a, y) }.

In general, a graph made of sockets and connectors behaves like a non-deterministic
commuter when it is a tree (that is, connected and acyclic) in which output sockets are
attached by their first tentacle, input sockets by their second, no connector is attached
by its service node, and moreover there exists a node, called pivot, that may split the
graph into two (possibly disconnected) subgraphs, one including all the input and the
other all the output sockets. In our implementation, nodes u,, 13 and u4 are all pivotal.
Of course, in the absence of a pivot, the internal infrastructure may allow for parallel
connections, which are not contemplated in the specification of Example[ll

Proposition 1. Any abstract graph G satisfying the conditions above is bisimulation
equivalent to the abstract graph corresponding to the non-deterministic commuter ob-
tained by deleting all the connectors from G and attaching all sockets to the pivot node.

4.2 Functional Equivalence

We now consider a more general kind of non-deterministic commuters, allowing multi-
ple connections to occur at once. Hence, the internal structure of a commuter can now
be any acyclic graph of connectors where all nodes are restricted. Input sockets are at-
tached by their second tentacle, while their first is attached to a free node called input
node; and dually for output sockets and output nodes.

A connection in a commuter C is a path from an input to an output node of C. A
set of disjoint such connections (i.e. no node is shared by two connections in the set) is
called a service of C. If s is a service, we write § the partial function from the input to
the output nodes of C such that §(x) = y if and only if there exists a connection from x
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Fig. 3. A channel with maximum flow 3 and its SG representation

to y in s. We say that two commuters are functionally equivalent when, for each service
s of one, there exists a service r of the other such that § = 7, and vice-versa.

Proposition 2. Two non-deterministic commuters are functionally equivalent if and
only if their alpha-equivalence classes are bisimulation equivalent.

4.3 The Maximum Flow in a Net

Consider an application where a sender sends discrete pieces of information, called
items, to a receiver. The communication infrastructure is represented by a directed
acyclic graph (V, &), where V is a set of vertices and & € V x V is a set of edges. An
edge (u,v) is an input for v and an output for u. We assume that the graph features a
unique vertex with no input edges, called source, representing the sender. Similarly, the
receiver is represented by a unique vertex with no input edges, called rarget.

We further endow each edge with a capacity, that is an upper bound to the number
of items it can transmit at a time: n items can travel simultaneously through an edge
provided its capacity is not less than n. No items are lost during transmission, and all
items in input to a node are immediately presented in output in equal number. Hence,
if the sender feeds the net with n items simultaneously, n items are received at once by
the receiver, provided the edge capacities are not exceeded. This gives rise to the notion
of network flow and of maximum network flow [6]], i.e. the maximum number of items
which can be simultaneously fed to the net. We call channels, and use metavariables
A, B... to denote them, graphs (V, &) as above, endowed with a functionc : & - N
assigning to each edge an integer capacity, which we assume strictly greater than 0.

A flow in a channel A is a function f : & — N such that f(u,v) < c(u,v) and
Yufu,v)y=73%, f(v,w), forall v € V except for source and target. The value of a flow
f at the source s is f(s) = >, f(s,u), while f(v) = Y, f(u,v) for all other vertices v.
Clearly, f(s) = f(t), and we call this number the value of f in A. A positive flow is one
with value strictly greater than 0. The maximum flow of A, written ¢ (A), is the greatest
value of a flow in A.

A channel A = (V,&,¢) is modelled by a synchronising graph A as follows. The
nodes of A are the elements of & U {i, 0}, where i and o are called respectively the input
and output nodes. All nodes in A are restricted, except i and 0. Hyperedges are the
vertices of V. They are attached to nodes as follows: v (xy) represents a vertex v ¢ {s, t}
where x is a vector including all input edges of v and y all outputs. Source and target
are respectively s (iy) and ¢ (x 0). Figure 3] represents a channel and its representation
as a synchronising graph.
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Fig. 4. Three consumable channels. Omitted capacities and energy charges are assumed high
enough as to not influence the flow dynamics

The theory of channels features actions of the form »n and n, where n € N, and no
parameters. It is generated by all axioms of the form:
xihy,  xhy
yiki,  Ymkn
v(x1 Xn Y1 Ym) - v(x Xn Y1 Ym),

where )| h; = Z;"Zl k; and, assuming c(i) = c(0) = oo, h; < c(x;), k;j < c(y;) for all
nodes x; and y;. It is easy to see that A supports a flow of value k if and only if A has a
transition A whose only observable actions are A(i) = {k} and A(o) = {k}. The following
result shows that, in this simple model, bisimulation equivalence captures precisely the
notion of maximum flow.

Proposition 3. Let A € A and B € B; then, A ~ B if and only if ¢ (A) = ¢ (B).

4.4 The Dynamic Flow of a Net

In real applications the nodes of a wireless network are often supplied with a finite
amount of energy which is consumed in routing information. The Smart Dust [24],
where nodes are motes of Imm diameter, is an extreme example of energy-sensitive
application. We give a simple account of such scenarios by charging the channels of
Section 3] with consumable energy and studying their behaviour.

A consumable channel A = (V,&,c,n) is a channel as above, endowed with an
energy functionn : V — N. A flow in A is just as in Section[4.3] with the additional re-
quirement that f(v) < n(v) for all v € V. The energy inside a channel decreases at each
flow. For simplicity, we shall assume that the passage of one information item through
a vertex consumes one energy unit. Then, the energy dynamics is described by a tran-

sition system over consumable channels with transitions (V, &, ¢, 1) L V,8E,¢,17),
whenever the channel to the left admits a flow f of value k, and 7’(v) = n(v)  f(v) for

all v € V. Clearly, A 5 A’ implies k < ¢ (A).
k,

A computation of a channel A is a sequence of transitions A k—l> Ay 5 A,
which we shorten as <(k;, ,k,). The dynamics @ (A) of a channel A is the set of all
its computations. The channels depicted in Figure [ all have a maximum flow of 4.
However, while (B) and (C) have same dynamics, not so for (A) as it does not admit a
computation (4, 2) while the others do. In Section 4.3 we distinguish channels such as
(B) and (C) by introducing the notion of robustness.
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As before, we model a consumable channel A by a synchronising graph A, and relate
the dynamics of the former with the observable behaviour of the latter. A is defined just
as in Section 3] except that the hyperedge v,(x y) corresponding to a vertex v is now
labelled by the energy n = 1 (v). The axioms v,(xy) — v, (xy) are as in Section 3]
with the additional requirement that, writing p the value Z;f’:l k; of the transition, p < n
andn’ =n p.

Channel dynamics do not provide a good notion of behavioural equivalence for con-
sumable channels. For example, consider the channels (B) and (C) in Figure[d by al-
ways taking the upper path, after (2, 1) (B) becomes a net that cannot transmit three
information items simultaneously (because of the capacity bound on its lower edge),
whereas (C) can always perform (2, 1, 3). Bisimulation equivalence captures such dif-
ferences in channel behaviours; moreover, it also yields a technique for proving that
two channels have identical dynamics, i.e. the same set of traces:

Proposition 4. Let A € A and B € B; then, A ~ B implies & (A) = & (B).

4.5 Network Robustness

The channels (B) and (C) of Figure[ have the same dynamics in the world described in
Section £ 4] but not in a more realistic setting where vertices may fail. In such a case B
is to be considered more robust than C. Robustness is ususally defined as the minimum
number of faults that would block a net. Here we show a model where bisimulation
equivalence captures precisely this notion of robustness.

Since the interplay between robustness and dynamic flow is subtle, we shall make the
simplifying assumption that every node has infinite energy and every edge has capacity 1.
Since flow values are not of interest here, we further assume that channels may pass at
most one information item at a time. We let r(A) denote the minimum number of nodes
that must be removed to disconnect a channel A (i.e. source from target).

We represent the behaviour of a faulty channel A by augmenting the theory of syn-
chronising graphs of Section 4] with new axioms for failure. As anticipated, all hyper-
edges of A are now labelled by co, and failure is represented by a sudden drop of ve,(x y)
to vo(x y). The axioms of flow are just as in Section [.4] with the only difference that
c(i) = c(o) = 1. For modeling failure, we introduce a new action 1 and the following
axiom schemes, where we write v when the energy of the vertex (co or 0) is irrelevant:

xi,T i0_ Xij
yn sl . 0,0
ey Sy sy S sy xo) “Sixo)
YjsT Y.t
v(xy) iR v(xy) forv ¢ {s,1} vixy) —v(xy) forv ¢ {s,1}

The first axiom accounts for the failure of v while the two axioms to the bottom are
to transmit such an information respectively towards the source and the target. Notice
that, in the first axiom, we can freely pick any x; € x and y; € y since every x; and y;
lie in a path from s to # (because we work with connected graphs). By the remaining
two axioms, source and target hide occurrences of T by issuing O on the free input and
output nodes. Hence, failures are not explicitly observable. Note that we engineered our
model as to admit one failure at a time. This allows us to test robustness by counting
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the number of steps that a channel requires in order to die. Simultaneous failures could
of course have been modeled, at the cost of exposing the failure action § over the free
nodes i and o.

The following result shows that, in this model, the robustness of a faulty channel is
captured precisely by the notion of bisimulation equivalence.

Proposition 5. Let A € A and B € B; then, A ~ B if and only if r(A) = r(B).

5 Conclusions

Synchronised graph rewriting has been proposed as a unifying semantic framework for
process calculi [T2T0IT53]; to fulfill this project, graphs must be endowed with an
abstract notion of behaviour. In this paper we do so by introducing a notion of bisim-
ulation equivalence for a system of context-free synchronising graphs and by proving
it a congruence with respect to parallel composition and node restriction. Bisimula-
tion equivalence can be used to prove the correctness of system implementations, or
(dually) of optimisation steps. For example, we have developed an application where
the specification of a simple component, called non-deterministic commuter, is shown
to be equivalent to an implementation in which the internal communication channel is
replaced by a local net.

Bisimulation techniques could have been used, of course, directly in each one of the
applications we have considered, without passing through an encoding into SG. How-
ever, the gain from our effort is twofold. On the one hand, matching the proposed notion
of graph bisimulation with well known properties in the theory of networks is a good
test for naturality and flexibility. On the other hand, SG may provide “mechanical” sup-
port for reasoning about such properties: systems such as the Concurrency workbench
[3] support bisimulation proofs in the framework of process algebra. It is a challenging
project to endow SG with a similar capability.

Finally, our rule of synchronisation is reminiscent of the communication law of the
Fusion Calculus [21]]. Linking to Fusion is therefore a natural gateway for us to the
universe of process algebra. We are working through this direction and have developed a
context-free theory of synchronising graphs which can be viewed, in a precise sense, as
a parallel and syntax-free version of the Fusion calculus. We believe that our translation
is fully abstract w.r.t. proper notions of bisimulation equivalences, but we still have not
been able to prove such a result.

Related work. SG is closely related to the synchronised hyperedge rewriting (SHR)
approach from which it takes inspiration. SHR rewriting acts on syntactic judge-
ments, that is term-graphs equipped with an inferface consisting of their set of free
nodes. The syntax-driven presentation of SHR enables several properties to be proven
at a rather high abstraction level. For example, mimicking the approach in [20] for the
n-calculus, it is proven in [14] that a given notion of bisimulation is a congruence for
SHR parametrically in a synchronisation algebra with mobility, thus accounting for sev-
eral styles of interaction. While renouncing the generality of SHR in abstracting over
synchronisation algebras, SG exhibits a much simpler system of inference rules.
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Productions are built-in SHR so as to make rewriting context-independent in a much
similar way our productions do in context-free theories. Indeed, in SHR the dependen-
cies described in Section[3(and, in particular, those in Examples@land[3)) are avoided by
defining rewriting rules on productions rather than on graphs. Albeit being resolutive,
this approach introduces some complexity in the definition of the operational semantics
of SHR. For example, all possible instances must be considered when synchronising
productions. We prefer to maintain the simple presentation of Section 2] and apply the
(simpler) rewriting rules [ sync |, [ open | and [ res ] to contex-free theories.

However, even in the setting of contex-free theories, SHR still differs from SG both
. . .. . . (x,a.y),id
in the notion of transition and in the proof theory. For example, while x + e(x) —

x,y F d(x,y) is legal in SHR, where nodes are treated as variables, e(x) R d(x,y)
violates the principle of locality of Definition [l in SG, where nodes are “constants”.
As for the proof theory, consider an application in which agent d(x) dies. This is done

in SG by the production d(x) AN 0, which is mimicked in SHR by the production x +
d(x) o, X + nil. Say thlS transition occurs in a larger context 1nclud1ng an idle agent

e(y). In SG: d(x)|e(y) —> e(y). In SHR: x,y + d(x)|e(y) —> x,y + e(y). Node x
remains in the context, even if no edge is attached to it. After that, and for the rest of
its life, e(y) can procede computation in SHR only if synchronising with the identical

transition x + nil o, x + nil of the graph consisting of a unique node x and no edges
(no such a graph exists in SG). Identities are therefore fundamental in SHR, and all
syntactic judgements are granted one. On the other hand, identities can be provided in
a context-free theory if desired. Interleaving could be inhibited, for example, by not
providing identities. This also impacts on behavioural equivalence as no distinction can
be made in SHR between edges whose only transition is the identity and edges with no
transitions at all.

The above examples show that no sensible matching can be made between SHR
(with synchronisation a la Milner) and context-free theories of synchronising graphs,
and none can be viewed as generalising the other.

Other interesting approaches have been applied to give congruential observational
semantics to graph rewriting. Notably, in [9] borrowed contexts enable the derivation
minimal contexts in a DPO (double-push out) approach. The idea, inspired by [T7I16],
consists in computing the minimal context within which a system can react. The result-
ing observational semantics, where observations are given by such minimal contexts,
provides a bisimulation which is a congruence “by construction”. A similar approach is
taken in [18]], where bigraphs are equipped with rules to form a bigraphical reactive sys-
tem providing a bisimilarity which is a congruence. An interesting research direction is
applying the mentioned approaches to SG and then compare the resulting observational
semantics with the one defined here. Indeed, it is not clear what are the relationships
between “natural” equivalences and those obtained via borrowed-context or reactive
approaches. Initial studies for process algebras show that such equivalences may not
coincide: for example, [11]] shows a congruential bisimilarity obtained with a borrowed-
context approach that is finer than open bisimilarity in the m-calculus. Recently, the
notion of saturated semantics [[1]] has been shown to provide suitable congruential
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bisimilarities (e.g. the open bisimilarity for sr-calculus can be obtained). This approach
is quite promising but, at the best of our knowledge, it has not been applied to observa-
tional semantics of graphs rewriting.
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Abstract. In this paper we present meta-rules to express an infinite
class of semantically related graph transformation rules in the context
of pure topological modelling with G-maps. Our proposal is motivated
by the need of describing specific operations to be done on topological
representations of objects in computer graphics, especially for simulation
of complex structured systems where rearrangements of compartments
are subject to change. We also define application of such meta-rules and
prove that it preserves some necessary conditions for G-maps.

Keywords: topology-based geometric modelling, graph transformation,
generalized map.

1 Introduction

Simulation of complex structured systems is a specialised area of topology-based
modelling (or topological modelling for short). Topological models deal with the
representation of the structure of objects (their decomposition into topologi-
cal units: vertices, edges, faces and volumes) and with the neighbourhood rela-
tions between topological units. Thus topological structures are specific graphs.
Among numerous topological models, generalized maps [[ie89] [Lie94] (or G-
maps) constitute a mathematically-defined model. Intuitively, edges between
nodes indicate which nodes are neighbours and edge labels indicate which kind
of neighbouring is concerned (i.e. connection of volumes, faces or edges). G-maps
are thus a particular class of graphs with labelled edges defined by constraints
ensuring that neighbouring relations are consistently organised. Topology-based
modellers and simulators aggregate a large number of operations to edit objects.
Most operations are designed to be dedicated to some application scopes. More-
over, they are usually implemented by a dedicated algorithm finely tuned in
order to optimise its efficiency.

Using the framework of graph transformations [Roz97, [EEPT06], we propose
in this paper to model topological operations with transformation rules. Thus,

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 147 2008.
© Springer-Verlag Berlin Heidelberg 2008



148 M. Poudret et al.

we will be able to develop a simulator as a simple engine of rules applications. In
a previous work, we defined transformation rules adapted to G-maps [PCGF07]
using the algebraic approach of graph transformation based on labelled graphs
and the double-pushout approach. Our first framework contains classical rules
defined on an explicit pattern and a first class of meta-rules defined on pat-
terns that carry isomorph topological units (volume, face, edge, vertex). This
first proposal was satisfactory in the sense that we defined the four basic opera-
tions of G-maps (those from which all others can be defined) in terms of graph
transformation rules. Even if we have already used our framework for the simu-
lation of complex biological structured systems [PCLGT 08, this first framework
was not powerful enough to directly define complex topological operations. How-
ever, to facilitate the derivation of efficient simulation algorithms from high-level
transformation rules, it becomes essential to be able to describe a large class of
complex topological operations directly in term of transformation rules, instead
of the composition of elementary topological operations. Indeed, we take advan-
tage of such an approach both by ensuring for free some constraints of G-maps
and by directly defining efficient algorithms by means of dedicated coverages of
G-maps driven by the form of the considered high-level transformation rules.

In this paper, we present a more general class of meta-rules for G-maps which
allows one to directly define a large class of topological operations. Intuitively,
our meta-rules are built over graphs whose edges are labelled by new symbols
playing the role of variables. The name of the symbols will indicate by which
kind of topological units they can be substituted. So, our variables may be per-
ceived as typed variables, each type representing a class of topological units
of similar nature as volumes, faces or edges within the framework of G-maps.
Thus, our meta-rules are more abstract and expressive than simple transforma-
tion rules over G-maps and take advantage of variables to generate a large family
of basic transformation rules sharing the same effect according to a topological
point of view. The use of variables to abstract graph transformation rules has
been previously addressed [Hof05], in particular to model software transforma-
tions for refactoring purpose [HJEQ6]. In [Hof05], variables can be graph vari-
ables, attribute variables and cloning variables. In particular, cloning variables
are mechanisms for duplicating some scheme extracted from the variable-based
transformation, according to a given cardinality. The application of a transfor-
mation rule with cloning variables can then be expressed in term of application
of simple transformation rules. In a similar approach, the application of our
meta-rules will imply a mechanism of scheme cloning. However, our meta-rules
will be specialised with respect to the underlying class of graphs on which they
are applied, that is, the class of G-maps. Cloning mechanism will allow us to
capture the class of all topological units of same nature (as volume, face, ...)
which are of different size according to the considered 3D-object. Moreover, as
G-maps are strongly constrained graphs, we will give some simple conditions
on our meta-rules, ensuring both the dangling condition on all underlying ba-
sic transformation rules issued from the meta-rules and some of the constraints
characterising G-maps among all labelled graphs.
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The paper is organised as follows. Section [2 briefly presents graph transfor-
mation rules. Section Bl presents the G-map topological model. In Section [4]
we introduce graph transformation meta-rules for modelling high-level topolog-
ical operations and their application is defined by means of some intermediate
cloning steps. In Section [l we prove that some constraints of G-maps are pre-
served through the application of graph transformation meta-rules. Section
provides some concluding remarks.

2 Preliminaries

Let us first recall some notions and notations concerning graph transformations
extracted from [EEPT06).

A graph G with labels in X'y is a couple (V, F) such that V is a set of vertices
and E C V x X x V is a set of non-oriented labelled edges. A path in G is
a sequence (v, l1,v1), (v1,l2,v2), ..., (Vk—1, K, v;) of E edges. We say that this
path links vy to v and is labelled by the word lyly...l[, € Y. If vg = vy, the
path is called a cycle.

We introduce orbit graphs as particular sub-graphs, those which are generated
by a vertex and an identified subset of labels. Indeed, these orbit graphs are useful
to easily represent and manipulate topological cells (like faces or volumes) in the
context of topological modelling.

Definition 1 (orbit). Let us consider G = (V, E) a graph with labels in X,
{li, ., Ix} C Xp(k >0) a set of labels and a vertex v of G.

We call orbit < ly,...,l > (v), the subset of V wertices reachable from v with
paths labelled by words of {l1,....,l5}*. The orbit < li,....,l;, > (v) is said to be
adjacent to v.

We call orbit graph << li,...,l; >> (v), the subgraph of G with vertices in
<ly,.lp > (v) and with edges in {(v',[,v”) € E [ v/, v” €<ly,...,l, > (v) and
le {ll, ey lk}}

A graph morphism f : G — H between two graphs G and H with labels in
X', consists of two functions fy from G vertices to H vertices and fg from
G edges to H edges, such that labelled edges are preserveﬂ. Such a morphism
is injective (resp. bijective) if both fi and fg are injective (resp. bijective). A
bijective morphism is named isomorphism. G and H are said isomorphic if there
exists an isomorphism f: G — H.

In the sequel, for our purposes, we only consider injective graph morphisms,
which formalise the classical inclusion relation. Thus, we present the algebraic
graph transformation approach and use the category Graph of graphs and graph
morphisms (see chapter 2 of [EEPT0]).

A production rule p : L «+— K — R is a pair of graph morphisms [ : K — L
and r : K — R. L is the left-hand side, R is the right-hand side and K is the
common interface of L and R. The left-hand side L represents the pattern of the

! For each edge (v,1,v") of G, fr((v,1,v")) = (fv(v),1, fv (v)).
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rule, while the right-hand side R describes the production. K describes a graph
part which has to exist to apply the rule, but which is not modified. Intuitively,
L\K is the removed parf] while R\K is the added part.

The rule p transforms G into a graph H, denoted by G =, ,, H, if there are
a match graph morphism m : L — G and two square diagrams which are graph
pushouts as in the following figure.

)
L «——K—»R

w e |

Ge——D—»H

A direct graph transformation can be applied from a production rule p on a
graph G if one can find a match m of the left-hand side L in G such that m is
an (injective) morphism.

When a graph transformation with a production rule p and a match m is
performed, all the vertices and edges which are matched by L\K are removed
from G. The removed part is not a graph, in general, but the remaining structure
D := (G\m(L)) Um(K) still has to be a legal graph (see following dangling
condition), i.e. no edges should dangle (source and target vertices of all remaining
edges should also remain). This means that the match m has to satisfy a suitable
gluing condition, which makes sure that the gluing of L\ K and D is equal to G
(see (1) in the figure). In the second step of a direct graph transformation, D
and R\K are glued together to obtain the derived graph H (see (2)).

More formally, we use graph morphisms K — L, K — R, and K — D
to express how K is included in L, R, and D, respectively. This allows us to
define the gluing constructions G = L +x D and H = R +x D as the pushoutﬁ
constructions (1) and (2) in the figure, leading to a double pushout.

A graph morphism m : L — G from the left-hand side of a production rule
p: L «— K — R to a graph G satisfies the dangling condition if no edge of
G\m(L) is adjacent to a vertex of m(L\K). This dangling condition makes sure
that the gluing of L\K and D is equal to G. Intuitively, all edges of G incident
to a removed vertex are also removed.

Finally, a graph transformation, or, more precisely, a graph transformation
sequence, consists of zero or more direct graph transformations.

3 Generalized Maps

The generalized maps (or G-maps) introduced by P. Lienhardt [Lie89] de-
fine the topology of an n-dimensional subdivision space. G-maps allow the rep-
resentation of the quasi-varieties, orientable or not. To represent cellular space

2 The substraction L\K between two graphs L = (Vi,Er) and K = (Vi, Ex) is
defined from the set substraction on vertices and edges L\K = (VL\Vk, EL\EK).
Thus L\K may not be a graph.

3Let f: A— Band g: A— C be two graph morphisms, D = B+ C is the pushout
object of B and C wia A, or more precisely, via (A, f, g).
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Fig. 1. Decomposition of a 2D object

subdivisions, we can choose other topological representations like combinatorial
maps [Tut84]. Nevertheless, G-maps have the advantage of providing a homoge-
neous definition for all dimensions. Thus, operation specifications are simpler.

Intuitively, the main idea of G-maps is to decompose an object into basic
elements, also called darts (graph vertices), which are connected together (with
graph edges). The decomposition of a 2D object is shown in Fig. [[I The 2D
object is displayed on Fig. In Fig. the object is split in order to focus
on the two faces (topological 2-cells) which compose it. In an n-G-map, n + 1
kinds of labelled-edges (from «q to a,) allow one to recover the knowledge about
neighbourhood relations between the topological cells. Thus, in Fig. an Qo
edge makes explicit the adjacency relation which previously exists between faces
ABC and BCDE. On Fig. the faces are decomposed into lower dimension
elements: the 1-cells. In the same manner, a; edges makes explicit the adjacency
relations between the 1-cells. Finally, in the 2-G-map of Fig. edges are
split into ap-connected 0-dimensional darts (represented with black dots). We
notice that the index i of «; labelled edges gives the dimension of the considered
adjacency relation.

Definition 2 (G-map). Let n > 0. An n-dimensional generalised map (or n-
G-map) is a graph G with labels in Xg = {ag, ..., an}, such that:

— The following Ca(Xg) condition is satisfied:
each vertex of G has exactly one adjacent l-edge for each label | € X'p.

— The following consistency constraint is satisfied:
for each pair of labels o, o; € X such that i+ 2 < j, there exist a cycle
labelled a;ajo05 from each vertex v of G.

The first condition of this definition (which is denoted by C for short, in the
sequel) ensures that each vertex of an n-G-map has exactly n+ 1 adjacent edges
labelled by «y, ..., ay,. For example, in Fig. the vertex dy is ayp-linked with
ds, ap-linked with ds, and as-linked with dg. On the border of the objects, some
darts do not have all of its neighbours. For instance, on Fig. the vertex d;
is ag-linked to dg and a;-linked to do, but di is not linked to another vertex
by an as-edge, because dy denotes the top corner of the object of Fig. and
thus is on the border of the 2D object. However, according to the C condition all
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vertices must have exactly one adjacent label for each dimension. Thus, there is
an as-loop adjacent to vertex dj.

The second point of the n-G-map definition expresses some consistency con-
straints on the adjacency relations denoted by the labelled edges. Intuitively, in
an G-map, if two i-dimensional topological cells are stuck together then they
are stuck along a (i — 1)-dimensional cell. For instance, on Fig. the 2-cell
defined by {di, ..., dgs} is stuck with the 2-cell defined by {dz,...,d14} along the
1-cell defined by the four vertices {ds, da, ds, d7}. The consistency constraint re-
quires that there is a cycle agasapas starting from each vertex of {ds, dy, ds, d7}.
Thanks to loops, this property is also satisfied on object borders. For example,
on the bottom of the object of Fig. we have the cycle agasagas from dig
and d12.

The following definition explains the notion of i-cell in terms of G-map orbits.

Definition 3 (i-cell). Let us consider G an n-G-map, v a vertex of G and
i € [0,n]. The i-cell adjacent to v is the orbit graph (see definition ) of G
L QU ey Q1 y Qi 1y ooy Qi >> (V). The i-cell adjacent to v is noted i-cell(v).

Let us illustrate this definition on the Fig.[Il The 2D geometric object Fig. is
composed of 0-cells (the geometric points A, B, C, D and E), 1-cells (the geomet-
ric segments AB, BC, AC, BD, DE and CE), and 2-cells (the two geometric
faces ABC and BCDE). The corresponding 2-G-map Fig. contains the
same cells denoted by the following sub-G-maps. The geometric triangle ABC'
is denoted by 2-cell(dy), i.e. the orbit graph << ag, a1 >> (d;) which contains
all vertices reachable from d; using ay and «; labelled edges. The geometric seg-
ment BC is denoted by the 1-cell(ds), i.e. the orbit graph << ap,as >> (ds)
which contains the four vertices d4, ds, d7 and dg. The geometric points are
denoted by 0-cells and their numbers of vertices depend on their numbers of
adjacent segments. For example A (denoted by 0-cell(dy), i.e. the orbit graph
<< a1,ag >> (dy)), contains the two vertices d; and da.

We have already seen that applying a production rule on a graph requires
to find a matching morphism satisfying the dangling condition. The following
proposition shows that in case of graphs verifying the C condition (see defini-
tion [2)), the dangling condition only depends on the form of the production rule,
and that the derivation then preserves the C property.

Proposition 1. Let p: L — K — R be a production rule, and m: L — G be
a match morphism on a graph G with labels in X'g which satisfies the Ca(Xg)
condition.

1. m satisfies the dangling condition iff L\K satisfies the Cp\ x(Xk) conditior].

2. Moreover, if the rule p satisfies the following C,(X'g) condition, then the
derived graph H produced by the direct graph transformation G =p.,, H
satisfies the Cy(Xg) condition.

4 The condition Cg is defined for a graph G but can be extended for a structure which
is not a graph. In this case, adjacent edges can dangle.
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Co(¥E): Co\rx(¥r) and Cp\x (X'E) are satisfied and each preserved vertex
of K has the same adjacent labelled edges in L and R (i.e. Vv € K, VI € Xg,
v has an l-edge adjacent in L iff v has an l-edge adjacent in R and if they
exist they are uniqud).

Proof. Let us prove the first point. Let us suppose that m satisfies the dangling
condition. By hypothesis, G satisfies the C (X g) condition, thus for each deleted
vertex v of m(L\K) and for each label | € Y there exists a unique /-edge
adjacent to v in G noted (v, 1, v"). Thus, thanks to the dangling condition, (v, [, v")
is an edge of m(L). Because m is injective, L\ K satisfies the Cr\ x(¥'g) condition.

Reciprocally, let us suppose that L\ K satisfies the Cp\ x (X'r) condition. Since
G satisfies the Cq(Xg) condition, each edge of G adjacent to a vertex of m(L\ K)
is an edge of m(L\K). So, the dangling condition is satisfied.

Let us now prove the second point. Let us suppose that G, the removed
structure L\K and the created structure R\K satisfy, respectively, Cq(Xg),
Ci\kx(¥E) and Cr\ g (¥E) conditions and that each preserved vertex of K has
the same labelled edges in left-hand side L and in right-hand side R. Thanks
to the first point, the dangling condition is satisfied and thus the direct graph
transformation G =, ,, H exists. Let v be a vertex of H and [ € Yg a label:

— If v is not a matched vertex, i.e. v is a vertex of G\m(L). Thanks to the
Cc(XE) condition, there exists a unique l-edge adjacent to v in G, noted
(v,1,v"). v may be a vertex of m(L) or not, but (v,l,v") is not a matched
edge, i.e. (v,1,v") is not an edge of m(L), because L is a graph. Thus thanks
to the direct graph transformation, (v,l,v") is the unique l-edge adjacent to
vin H;

— If v is an added vertex, i.e. v is not a vertex of GG. Thanks to direct graph
transformation, there exist a vertex u of R such that the double pushout
produces v in H from u. However, thanks to hypothesis, R have exactly one
l-edge adjacent to u. Thus H have exactly one [-edge adjacent to v;

— If v is a matched vertex, i.e. v is a vertex of m(K). Thanks to the Cq(XE),
there exists an unique l-edge adjacent to v in G, noted (v,1,v’). And thanks
to the m injectivity, there exists a unique vertex w in L such that my (u) = v.

e If there does not exist any l-edge adjacent to w in L, thanks to hypothesis,
there does not exist any l-edge adjacent to u in R. Thus, (v,l,v’) is an
edge of G\m(L) and thanks to direct graph transformation, (v,l,v") is
an edge of H. Moreover, thanks to the Co(Xg) condition, (v,l,v") is the
unique [-edge adjacent to v in H;

o If there exists an edge (u, [, ') in L, thanks to hypothesis, it is the unique
l-edge adjacent to w in L and there exists an unique l-edge adjacent
to u in R noted (u,l,u"). Moreover, thanks to the C;(Xg) condition,
the unique l-edge adjacent to v in G is mg((u,l,u)). Thus the double
pushout of the direct graph transformation produces an unique [-edge
adjacent to v from the (u,l,u”) edge.

5 We suppose, without loss of generality, that the morphisms [ and r of the double-
pushout figure (see section [2) are the identity.
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Consequently, there exists a unique [l-labelled edge adjacent to v in H. In other
words, H satisfies the Cy(X'g) condition. O

The proposition [I] ensures that all derivations with an adequate production rule
preserve the C condition of G-maps (see definition 2]). Let us notice that like
in classical operation definitions (mathematical definitions, algorithms or formal
specifications), the G-map consistency constraint (second point of definition [2])
has to be verified individually for each production rule.

4 Topological Operations in Terms of Graph
Transformation

The set of basic topological operations for G-maps has been defined [[ie89] and
includes different operations, namely vertex addition, vertex suppression, sew
and unsew. In previous works [PCGT07], we have shown that first and second
operations can be directly translated into transformation rules satisfying the C
condition and moreover the consistency constraint of G-map (see definition [2I).
Nevertheless, both sew and unsew operations are generic and cannot be de-
fined directly in terms of graph transformation rules because they depend on
the orbits. To overcome this limitation, we introduced in [PCGT07] a concept of
graph transformation meta-rules which abstracts a set of graph transformation
rules along an orbit. The idea is to propagate a local transformation pattern
(expressed on a few vertices) along an orbit of the graph, independently of the
form of this orbit. To specify which part of the local pattern is associated to the
elements of the orbit, we introduce an additional label, which denotes the orbit.
Graphically, these meta-labelled edges are noted with dotted lines. Thus the 3-
sew meta-rule (which aims at sticking two volumes along one face) of Fig.

______________
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(b) 3-sew of triangular faces

Fig. 2. 3-sew rules
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a) Triangle ) Tetrahedron ¢) Square d) Pyramid

Fig. 3. Cone operation

may be applied along a triangular face to define the classical rule of Fig.
or along any other face orbit. More precisely, a meta-edge (di, < ap, a1 >,d1)
of a meta-rule specifies a sub-graph labelled on {ag, a1} and thus matches an
orbit graph << ag,a; >> (dy) in each classical rule (see Fig. . The pat-
tern connected to dj, compounded of a ag classical loop, must be repeated along
this orbit. Thus, Fig. Vertices ai, -, f1, a2, ..., f2 have an ag loop. Finally,
(d1, < ap, 1 >,dy) and (da, < ag, @1 >, ds) must be expended in two isomorphic
orbit graphs. Thus, << ag, a1 >> (d1) and << ag, @1 >> (dz2) are isomorphic
faces in Fig.

This previous framework is enough to specify basic operations, and thus is
complete because all 3-G-map operations may be specified from the basic ones.
But, from a user point of view, to specify an operation as a large composition
of basic operations is less easy and efficient that specifying it directly. Unfortu-
nately, the previous framework is not general enough to directly specify most of
complex operations. Indeed, previous meta-rules are defined along a unique orbit,
thus every meta-edges are expended as isomorphic orbit graphs. For example,
the four meta-edges of sew rule Fig. are expended to four isomorphic trian-
gular faces (see Fig. . But, for most operations we need to match (and/or
to produce) different kinds of orbit graphs. In the cone operation (which aims
at producing a cone-shaped volume from one base face), different kinds of orbit
graphs are necessary to produce, for instance, a tetrahedron from a triangular
face or a pyramid from a square face (see Fig. [)). This operation cannot be
defined from several copies of the base 2-cell. But, it may be defined from copies
of base vertices linked together in the right manner. Especially, the top 0-cell of
a cone is duald of the base 2-cell. Intuitively, the 2-cells adjacent to the base are
also adjacent to the top. The classical rule of Fig. deﬁnes the cone operation
on a face corner. Here, the top orbit graph << ay,as >> (d4) is a copy of the
base orbit graph << ag,@; >> (di) with a renaming of links. Thus, when a;
and b are aq linked, a4 and by are a; linked and when b; and ¢; are oy linked,
by and c4 are ao linked. Moreover, when a7 and by are aq linked, as and by are
also ag linked and when b; and ¢; are a linked, by and co are not linked. The as
loop of the left-hand side of the rule figure [i(a)] means that only isolated faces
(which are not linked to another one) can be matched in order to produce cones.

5 Two topological cells are dual if they are isomorphic up to a renaming of their labels.
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Fig. 4. Cone rules

The following definition allows us to generalise graph and production rules
notions by adding meta-edges that denote isomorphic orbit graphs up to a re-
naming of their edges labels.

Definition 4 (meta-graph and production rule). Let § = {o},....,a}} C
Y'E a subset of labels and L'z be the set of all renaming functions v : 8 — Xg U
{ }. A renaming function v is named meta-label and is said full if v(8) C Xg
(without “ ”E

A meta-graph on 3, or meta-graph, is a graph with label in Xg U I3 such
that each meta-labelled edge is a loop. A meta-graph is said full if all its meta-
labels are full. Graphically, a meta-loop ~v is labelled by the renamed orbit <
ah), ey >.

A production meta-rule on 3, or meta-rule, is a production rule p : L «—
K — R on the full sub-category of generalised meta-graph on (3, such that the
meta-graph L is full.

The meta-rule Fig. speciﬁes the cone operation. In this example, we can see
four different kinds of orbits: a full orbit graph for the base (2-cell << ag, ; >>
(d1)), two partial ones for the side facesd (2-cells << ap, >> (d2) and <<
,ap >> (d3)) and another full one for the top (0-cell << aj,an >> (dy)).
All of them are translated copies of matched 2-cell << g, a7 >> (dy), using

respectively renaming functions 1 : ag — g, a1 — a1, Y2 : ap — g, a1 —

" Where () names the set {y(I) | I € 8}.
8 Formally, this two subgraphs are not orbits in the sense of definition [II
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Fig. 5. Expansion of a meta-graph G on {ao, o1} along a graph O

Y3 1 ap — ,a1 — ag and Y4 : ag — ai,a1 — ao. By lack of space, we do
not explain how by means of similar production rules, we can express other
topological operations like the extrusion operation (to create box from a face)
or the rounding operation (to round angular edges or vertices).

As seen on examples, the semantic of meta-graph patterns is given by expand-
ing the meta-patterns along an orbit on .

Definition 5 (expansion). Let § = {a],....,al.} C Xg be subset of labels and
O be a graph with labels in B. The expansion of a meta-graph G on 3 along O
1s the Cartesian-like product G x O such that:

— The set of vertices is the Cartesian product of vertex sets
{(u,a) | u is a vertex of G and a is a vertex of O};

— The set of edges is
{((w,a),1, (v,a)) | (u,
{((w, a),y(1), (u, b)) |
an edge of O}.

l,v) is an edge of G and a is a vertex of O}U
(u,v,u) is a meta-edge of G, y(I) € X¥g and (a,l,b) is

The expansion of a morphism f : G — H along O, is the morphism f x O :
G x O — H x O which associates the vertex (fv(u),a) of H x O to each vertex
(u,a) of G x O.

The expansion of a production meta-rule p : L L KLR along O is the
production rule p X O : L x O «+— XOR %<0 Rxo0.

In Fig. Bl we expand a graph G on {ag, a1} (see Fig. along a graph O
labelled in {ag, a1} (see Fig. [f(b)). Actually, G is extracted from the right-hand
side of the cone meta-rule (as shown in Fig. and O represents corner 2-
cell. The first step of the expansion process (see Fig. consists in copying
the vertices of G along O (computing Vi x V). The next steps consist in,
respectively, copying classical edges of G along O (see Fig. and copying

renamed edges of O along the G meta-edges (see Fig. [5(e)). Then, Fig. is
obtained by expansion of cone meta-rule Fig. along a face corner pattern.

Proposition 2. Let f: G — H be a morphism between the two meta-graphs G
and H on 3, and O a graph with label in 3. The expansion f x O always exists.
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Proof. For each edge (u,l,v) of G and each vertex a of O, ((u,a),l,(v,a)) is an
edge of G x O and ((fv(u),a),l,(fv(v),a)) is an edge of H x O.

For each meta-edge (u,~,u) of G and each edge (a,l,b) of O, if v(I) € Xg
then ((u,a),v(l), (u,b)) is an edge of G x O and ((fv(uw),a),v(1), (fv(u),b)) is
an edge of H x O.

G x O has no other edge. a

The following proposition shows that the expansion does not depend on [ labels.
Its proof is left to the reader.

Proposition 3. Let 8 and § be two subset of labels, L : 6 — 3 a bijective func-
tion, G be a meta-graph on 8 and O a graph labelled in 3.

Let H be the meta-graph on § obtained from G by renaming each meta y-loop
to a vy o t-loop and P be the graph labelled on & obtained from O by renaming
each label of O along t='. Then we have G x O = H x P.

The previous proposition founds the graphical notation of meta-loops with im-
plicit renaming functions.

By definition, if there exist several meta-edges on the left-hand side and on the
right-hand side of a production meta-rule, the expansion replaces all these meta-
edges with distinct sub-graphs (each of them is isomorphic, up to a renaming of
their edges labels, to the 8-labelled graph O).

Definition 6 (direct graph meta-transformation). Let G be a graph la-
belled on X and p: L «— K — R a production meta-rule on 3.

The meta-rule p direct meta-transforms G into a graph H labelled on X, de-
noted G =, 0,m H, if there are a graph O with labels in 8 and a match morphism
m: L x O — G such that G =px0,m H is a direct graph transformation.

Classically, a graph meta-transformation, or more precisely, a graph meta-
transformation sequence, consists in zero or more direct graph transformations.
We should notice that, a production rule without any meta-edge can be seen
as a meta-rule on the empty set. Indeed, such production meta-rules and the
corresponding classical production rule allow one to produce the same direct
transformed graphs.

5 Consistency of G-Maps and Transformation Rules

We have already seen that applying a production meta-rule on a graph requires to
find a matching morphism which satisfies the dangling condition. The following
proposition shows that, as in proposition [I, in case of graphs in which each
vertex has exactly one adjacent l-edge for each label [ (i.e. the condition C), the
dangling condition uniquely depends on the form of the production meta-rule,
and that the derivation then preserves the C property. Let us first define the
extension of condition C (see proposition[Il) to meta-graphs and meta-rules:

Cc(XYE) Let G be a graph on (. For each label [ € X', each vertex has exactly
one adjacent edge s. t. either it is [-labelled or it is y-labelled with { € v(53);
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Cp(X'E) Let p be the rule L «— K — R on 3, Cr\x(¥E) and Cp\ x(XE) are
satisfied and each preserved vertex of K has the same adjacent labelled
edges in L and R (in the extended way).

Proposition 4. Let p : L«— K — R be a production rule on 3, O be a graph
with labels in B and m : L x O — G be a match morphism on a graph G with
labels in X'g which satisfies the Co(Xg) condition.

1. m satisfies the dangling condition iff O satisfies the Co(B) condition and
L\K satisfies the Cr\ k(X E) condition.

2. Moreover, if the rule p satisfies the C,(X'g) condition, then the derived graph
H produced by the direct graph transformation G =p0,m H satisfies the
Cu(Xg) condition.

Proof. Let us first prove the following lemma: for each vertex u of a meta-graph
G and each vertex a of O, vertices v in G and (u,a) in G x O have the same
labelled edges (in the extended way).

— If w has an adjacent [-labelled edge (u,l,v) in G, then (u, a) has an adjacent
I-labelled edge ((u,a),l, (v,a)) in G x O;

— If w has an adjacent meta v-edge in G, and a has an adjacent I-labelled edge
(a,1,b) in O, such that (1) € Xg, then (u,a) has an adjacent labelled edge
((u,a),v(1), (u,b)) in G x O; And by definition, G x O has no other edges.

The proof of the proposition lies directly in this lemma. O

The condition of the proposition @l ensures that a full y-edge in the left-hand side
of the meta-rule matches a complete < (83) >-orbit of the transformed graph
and respectively full v-edges of right-hand side match complete < v(8) >-orbit
of produced graph.

Thanks to proposition [l a transformation of a G-map along the cone meta-
rule of Fig. preserves the C property of G-maps. Since each vertex of the
cone meta-rule has exactly three links labelled by g, oy and «s (in extended
way), the expanded rule (see Fig. for example) has the same property.

Moreover, it is easy to prove that the consistency property of G-maps (see
second condition of definition ) is preserved by application of the cone meta-
rule. Indeed, in the left-hand side, because d; has a as-loop, its ag-neighbour
has also an as-loop. Moreover, in all expanded rules along a graph O, because of
Co({ag,a1}), each expanded vertex has an as-loop and an «p-neighbour. And
thus, each expanded vertex has an agasapas labelled cycle. For example, in the
cone expansion Fig. 4(b)| a1b1 and ¢1dy are two apasapas labelled cycles.

In the right-hand side, since d; and ds are as-linked together, their -
neighbours are also as-linked together. Indeed, because of Co({ap,a1}), each
vertex of O has an ag-edge. And thus, each expanded vertex has an agasagas cy-
cle. In the cone rule example Fig. a1bi1boas and c1didacsy are two agasagas
labelled cycles. In the same way, ds and d4 are ap-linked together, thus their
ao-neighbours are also agp-linked together. In the cone rule example Fig.
asay, bsbycscs and dsdy are three agasagas labelled cycles.
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6 Conclusion and Perspectives

In this paper we focus on the formalisation of complex topological operations on
G-maps. Pursuing previous works, we propose a general class of meta-rules for
G-maps which allows us to directly define a large class of topological operations,
helpful in the context of modelling of complex structured systems, as the cone
operation taken as illustration in the paper. We prove that thanks to strong
G-maps constraints concerning edge labelling, the dangling condition of a meta-
rule can be statically verified independently of the G-map on which it is applied.
We will search for sufficient syntactical conditions on rules to ensure G-map
consistency constraints.

This rule-based approach to specify topological evolution of objects will be
useful for coupling transformations of objects with more classical rule-based ap-
proaches for simulating complex systems. In the context of modelling of complex
biological systems, such a simulation paradigm has been broadly considered lead-
ing to an enormous amount of successfull applications [CESQG, [Car05].
In these models, the compartmentalisation captures a static topology (focusing
on exchange between compartments and molecular interactions) or simple topo-
logical modifications (resulting, for example, from endocytosis or exocytosis).
Nevertheless, although biological systems are composed of molecules, the struc-
ture of the system and components both play essential roles in the biological
functions of the system. Indeed the understanding of biological systems needs
to take into account molecular phenomena (possibly abstracted by continuous
concentrations), communication channels and space structuring of the cells at
a same accuracy level. Thus it is an important challenge to understand the ef-
fects of spatial structure on the different concentrations, and reciprocally, the
consequences of the evolution of concentrations on the spatial structure.

A general framework for rule-based simulations taking into account both
molecular phenomena and subcellular compartment rearrangments would han-
dle embedded G-maps. In previous work [PCGT07], we sketched out embed-
ded G-maps by associating labels with vertices to represent geometric aspects
(shapes of objects, distances between them, etc.) and by associating other la-
bels to represent biochemical quantities (protein concentrations, protein fluxes
through a subcellular wall, etc.). We have already used such topological trans-
formation rules to simulate the evolution of biological subcellular compartments
ﬂm. To apply topological transformation rules, we have first to match
the left-hand side of a rule. The pattern-matching problem is recognised as dif-
ficult in the general case of general graphs (without any constraint). In the
particular case of G-maps, we have applied heuristics derived from usual G-map
coverage involved in classical computer graphics operations. Our future works
will then focus on the definition of embedded G-maps, and of associated graph
transformation rules. Then it will be mandatory to study the conditions which
ensure that the application of a transformation rule leads to another embedded
G-maps in a coherent way.
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Abstract. The goal of th